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Abstract

The classical Eisenstein series is the first concrete example of a modular form.
Their automorphic analogue plays a similarly central role to the theory of automor-
phic forms and automorphic representations. In fact it was whilst computing the
constant terms of the Eisenstein series that Langlands formed his famous conjec-
tures. In 2013 Dihua Jiang, Baiying Liu and Lei Zhang in their paper “Poles of
certain residual Eisenstein series of classical groups” [JLZ13] prove some theorems
about the possible locations of poles of Eisenstein series (as the name suggests) as-
sociated to the so called classical matrix groups. Our thesis builds up the theory of
automorphic representations in order to explain these results.
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Introduction

Motivation

The goal of this thesis is to exposit some of the results in [JLZ13]. In a nut shell, the
Eisenstein series is a key tool in the Langlands program and the paper [JLZ13] pro-
vides an exemplar of why. It demonstrates the connection between L-functions and
the constant terms of Eisenstein series and demonstrates many of the key techniques
in the analysis of Eisenstein series.

Here we attempt to put down what we understand of the “big picture”. It could
be argued that we spent too much time trying to understand the motivation for the
results in [JLZ13] and not enough time on the results themselves and so this section
is to ensure that time was not (very) wasted.

We should point out that there are many surveys and books on the Langlands
program, class field theory and modern topics in number theory that this introduc-
tion is indebted to. Some exemplars are [FGKP16,BCDS+04] for longer treatments,
in particular the statements of the conjectures are most clearly stated in Cogdell’s
chapters in [BCDS+04]. Shorter surveys are [Gel84,Lan,Lan89,Art81].

0.0.1 From Ancient to Modern

We follow the wonderful exposition in [Wei15]. A problem that Pythagoras could
have understood is “which positive integers are the sum of two squares”. In 1640
Fermat answered this question, he first reduces the question to when is a prime the
sum of two squares. Thus the problem is immediately reformulated as a problem
about congruences mod a prime p, “when does there exist a solution to a2 + b2 ≡
0 (mod p)”, or whats the same, by dividing out b2, “when is there a solution to
x2 + 1 ≡ 0 (mod p)”. The famously has the solution

Theorem 0.1. Let p be an odd prime. Then x2 + 1 ≡ 0 (mod p) has a solution if
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and only if p ≡ 1 (mod 4).

Recall the Legendre symbol, for p, q odd and non-equal primes we have

(
q

p

)
..=

1, there is a solution to x2 − q ≡ 0 (mod p)

−1, else
.

Then the theorem of Fermat was “upgraded” by Gauss to his famous reciprocity
law.

Theorem 0.2. For p, q odd and non-equal primes,(
p

q

)(
q

p

)
= (−1)

(p−1)(q−1)
2 .

Having a solution mod a prime is the same as asking whether the polynomial
splits mod that prime. The natural question is then: Given a monic irreducible
polynomial with integral coefficients can we determine by congruences whether it
splits mod a prime. Gauss’s reciprocity is a complete solution to this problem for
polynomials of the form f(x) = x2 − q for q odd prime.

Remark 0.3. The odd limitation is for brevity here and of course can be lifted.
Moreover the solution for primes can be leveraged for a solution for other integers.

Recall that if f(x) ∈ Z[x] is monic and irreducible then there is a unique minimal
field F in which it factors as linear polynomials, called the splitting field. The Galois
group of f(x) is then defined to be Gal(F/Q). Class field theory is a solution to
problem above when this Galois group is Abelian. To explain we need to introduce
the standard algebraic number theory setup.

Let Q ⊆ K be an extension of number fields, with respective rings of integers
Z ⊆ OK and let p be a prime in Z hence (p) is a prime ideal of Z and let

OK(p) =
∏
i

Pei
i ,

be the prime decomposition in OK . Then (p) splits in OK if for every i we have
ei = 1 (this is being unramified) and OK/Pi

∼= Z/(p). The splitting of primes is
related to the splitting of polynomials by the following theorem

Theorem 0.4 ( [Lan94], Prop. 26). If f ∈ Z[x] monic and irreducible and f(α) = 0

then for K = Q(α) we have with finitely many exceptions that f is split mod p if
and only if (p) splits in OK.
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So to answer Q1. we now want to solve by congruences when prime ideals split.
Every field extension K/L has a Galois closure, that is an extension L′/K of minimal
degree such that L ⊆ L′ and L′ is Galois over K.

Lemma 0.5. A prime ideal of OK is split in OL if and only if it is split in OL′.

Thus we lose nothing by considering only Galois extensions of fields. Thus we
have “the main theorem” of class field theory:

Theorem 0.6 ( [Wei15], Thm. 3.2.1). Let K/Q be an Abelian and Galois extension.
There is an ideal f = (m) ⊆ OQ = Z such that for a prime p ∈ Z the ideal (p) is
split in OK if p ≡ 1 (mod m).

Thus we have a solution to the splitting of primes via congruence relations.
This we hope motivates class field theory, now we will follow [Cond] for some

more detail on class field theory. Class field theory is over a hundred years old with a
storied past and many incarnations of the main theorem above. To see the Langlands
program as a generalisation of this theory we want to trace the development to where
Langlands picked up.

Class field theory begins with Kronecker in 1853, who constructed an extension
of number fields K ′/K whose Galois group is isomorphic to the ideal class group
of K, a so called (by Weber) “class field” for K. Kronecker would go on to make
several conjectures that would form the heart of class field theory, for instance, he
conjectured that a Galois extension of Q is determined by the primes of Z that split
over that extension. In fact this was solved by Bauer in 1916:

Theorem 0.7. (Bauer) Let L1, L2 be finite extensions of a number field K, then
L1 = L2 if and only if the primes of OK that split in OL1 is equal to the set of primes
that split in OL2.

However, there was no systematic way of finding which primes split over the
extension. Takagi was to supply something very close to theorem 0.6 in 1920 and it
was to be made even more explicit finally by Artin in 1927. Thus global class field
theory was “solved”, immediately the natural question was raised, what happens
in the non-Abelian extensions of number fields. The (global) Langlands conjectures
(amongst other things) can be viewed as an attempt to answer this question.

Another direction that people were interested in was the extensions of local fields,
as opposed to number fields. It was Hilbert who introduced in 1897 the use of the
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p-adic numbers, in spirit if not in name, he wrote congruences of arbitrary powers
of primes. Let ν be a place of Q, then define the ν-adic Hilbert symbol for a, b ∈ Q×

(a, b)ν ..=

1, a = x2 − by2 has a solution in Qν

−1, else
.

Theorem 0.8 (Hilbert’s Quadratic Reciprocity). For all a, b ∈ Q×

∏
ν

(a, b)ν = 1.

This is equivalent to Gauss’s reciprocity law, however much more uniform to
state, treating odd and even primes in the same way, and not requiring any co-prime
conditions. This moreover treats finite and infinite places uniformly. Building on
this work and using Artin reciprocity Hasse, after introducing the p-adic numbers
in 1927, proved the first versions of local class field theory in 1930, that is reci-
procity for extensions of the local fields Qν . The statements here are too technical
for a motivational introduction however replacing all the global fields in the above
statements with local fields is not far off.

Note that the definition and proof of local class field theory depends logically on
global class field theory. Hasse was able to prove later in 1933 the main results again
but without recourse to global class field theory. It lacked the explicit construction
of the class fields however which was finally supplied in 1965 by Lubin and Tate.

What remained to do was supply a proof of global class field theory from local
class field theory. In pursuit of this task the machinery of the ideles and adeles was
introduced. In this language (part of) global class field theory can be restated as

Theorem 0.9 ( [Neu99], Prop. 1.3). Let the ideal class group of a number field K

be denoted ClK. Then there is a surjection

A∗/K∗ A−→ ClK ∼= Gal(K ′/K),

where K ′ is the class field of K.

If we think about representations of these groups then this surjection gives a
relation between characters χ of A∗/K∗ and characters χ′ of Gal(K ′/K) by pulling
back along A.
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A∗/K∗ Gal(K ′/K)

C∗

A

χ χ′

Thus A can be thought of as generating a correspondence

{Maps A∗/K∗ → C∗} → {Maps Gal(K ′/K) → C∗}.

One then observes that this can be rewritten as

{Maps GL(A)/GL1(K) → GL1(C)} → {Maps Gal(K ′/K) → GL1(C)}.

This suggests the generalisation to

{Certain reps of GLn(A)/GLn(K)} → {Certain reps of Gal(K̄/K) on GLn}.

But according to Langlands [Lan89], who was inspired by the philosophy of Harish-
Chandra, we should treat all reductive groups the same, so Langlands conjectures
that for any reductive linear algebraic group G there is some correspondence

{Certain reps of G(A)/G(K)} → {Certain reps of Gal(K̄/K) on G}.

These two sides of the correspondence are referred to as the “automorphic side” and
the “Galois side” respectively. The content that follows will be almost entirely on
the automorphic side.

0.0.2 Harmonic Analysis

As we mentioned the work of Langlands was inspired by the work of Harish-Chandra
in harmonic analysis of Lie groups. Here we want to say something about the
precursors to Langlands work in this respect, following [Fol16].

The story starts with the Fourier transform for periodic functions. These of
course have ancient precursors in the ideas of the Pythagoreans and were “in the
air” of the eighteenth century, Fourier, around 1822, was first to conjecture that
all functions should be decomposable into elementary periodic functions. The base
case is the Fourier transform on T the circle, realised concretely as the unit length
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elements of C . Then for every f ∈ L2(T) we have that

f(x) =
∑
n∈Z

ane
2πinx, an ∈ C.

The important properties of the circle as a topological group are the following:
firstly it is locally compact Hausdorff, hence has a Haar measure allowing us to talk
about square integrable functions. Secondly it is both compact and Abelian.

The first generalisation appeared in 1927 with the Peter-Weyl theorem. Starting
with a locally compact topological group G, then a unitary representation on a
Hilbert space H is a continuous homomorphism

π : G → U(H).

We denote the dual group of G by Ĝ, this is defined to be the space of (equivalence
classes of) irreducible unitary representations of G.

Theorem 0.10 ( [Fol16], 5.2, 5.12). If G is compact then every unitary representa-
tion of G is a direct sum of irreducible representations.

Remark 0.11. For lack of time and space we will need to make this remark several
times: The actual content of the Peter-Weyl theorem is not that the representations
decompose but how they decompose. That is Peter-Weyl tells us how to construct
the components of the direct sum, what their dimensions are etc.

Importantly, there is no requirement for finite dimensionality.

Example 0.12. Consider the regular representation of T on L2(T) this decomposes
into

L2(T) =
⊕
χ∈Ĝ

Cχ.

Because T is also Abelian all its irreducible representations are one dimensional, in
fact, we have that all characters of G are

eiθ 7→ eniθ.

Therefore the decomposition exhibits the exponentials as a basis for functions on the
circle.

In the 1940’s, Weil worked out the theory for locally compact Abelian groups,
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proving the general case of Bochners theorem [Fol16, Thm. 4.18]. The groups that
we are interested in however, are neither compact, AQ

×, nor Abelian, GLn.
A group is type I if for every (continuous unitary) representation π such that

the center of HomRep(π, π) is trivial, we have a decomposition as a direct sum of
irreducible representations.

Example 0.13. The adelic points of a connected reductive linear algebraic group
(LAG) are a type I group. The proof is outside the scope of this thesis but can be
found in [Dv17, Thm. 1.7 + Thm. 2.3].

Example 0.14. Consider G(A) the adelic points of a connected reductive LAG.
This is a second countable group. First consider the adele ring AF of F . This has
the restricted product topology, where if Oν is the ring of integers of Fν, then an
arbitrary open subset looks like a union of sets of the form

US ×
∏
s/∈S

Os,

where US ⊆
∏

s∈S Fs is open in the product topology. Because for any place Fν is
second countable and the product of second countable spaces is second countable it
is clear that

∏
s∈S Fs is second countable. Moreover there is a countable number of

finite subsets of Z , hence there is a bijection between a basis of the restricted product
topology and ℵ0 × ℵ0 which is countable hence this topology is second countable.

If G ..= SpecF [x1, ..., xn]/(f1, ..., fm) is an affine scheme then the topology
on G(A) is the subspace topology of An on which all the f1, ..., fm vanish [Con12].
In particular the finite product of second countable spaces is second countable and
subspaces of second countable spaces are second countable, hence G(A) is second
countable.

Example 0.15. The adelic points of a connected reductive LAG are a unimodular
group. The proof is outside the scope of this thesis but is stated in [Cona, Lem. 2].

In the 1950’s Segal and Mautner proved the Plancherel Theorem which is the
Peter-Weyl and Bochner type result for type I, second countable and uni-modular
topological groups.

Remark 0.16. The name Plancherel theorem is overloaded in harmonic analysis. We
will give exact references to the precise theorem we are referring to below.
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To state it one must be somewhat familiar with direct integrals. The theory is
explained in [Fol16, 7.4], but some of the basic idea is contained in the example of
direct sums.

Example 0.17 (Direct Sums). Let I be a countable set with the discrete sigma
algebra and counting measure µ. Let (Hi)i∈I be a collection of Hilbert spaces then

⊕
i∈I

Hi =

{
(hi)i∈I ∈

∏
i∈I

Hi :

∫
I

‖hi‖2i dµ < ∞

}
.

I.e. the Hilbert space direct sum is by definition square summable sequences, but
sums are just discrete integrals.

Then (part of ) the Plancherel theorem is

Theorem 0.18 (Plancherel, [Fol16], 7.44). The regular representation of a type I,
second countable and unimodular topological group is a direct integral of the irre-
ducible unitary representations.

Remark 0.19. Again the Plancherel theorem says much more; it contains details
about the topology and measure on the set of unitary irreducible representations,
and which representations are associated to them in the direct integral.

0.0.3 The Work of Langlands

It is as a continuation or variation of this tradition that we see the work of Langlands
in [Lan76], in which he provides some decomposition of the spectrum of the adelic
points of a connected reductive algebraic group over a number field G(A).

Theorem 0.20 ( [Art79], MAIN THEOREM (b)). There is an orthogonal decom-
position of the representation of G(A) on L2(G(Q)\G(A)) into

L2(G(Q)\G(A)) =
⊕
P

L2
P(G(Q)\G(A)),

where P runs over certain “associate classes” of parabolics of G and the summands
are the direct integrals of spaces of L2 automorphic forms.

This construction is very explicit. The spaces are constructed out of the residues
of Eisenstein series and this is one reason for their importance.
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The spectrum of L2(G(A)) refers to such a decomposition. In particular, we
have some important “pieces” to such a decomposition. We call such decompositions
“spectral”, alluding to the spectral theorem which provides such a decomposition
in terms of the eigenvector of certain operators. Moreover, these decompositions
are largely proved in terms of the more general spectral theorems. The piece that
decomposes into a direct sum of irreducible is called the discrete spectrum. The
compliment of the discrete spectrum is called the continuous spectrum. One
can define cuspidal L2 functions in the exact same way as cuspidal automorphic
forms (see section 5.1) and then it has been shown that the cuspidal spectrum,
the subspace of L2 consisting of cusp forms, decomposes as a direct sum [GH24, 9].
Thus the cuspidal spectrum is contained in the discrete spectrum in this case. The
residual spectrum is defined to be the compliment of the cuspidal spectrum in
the discrete spectrum.

It is during this analysis that the ideas expressed in his famous letter [Lan67]
would begin to form, as he noticed that certain Euler products of analytic functions
were appearing in the constant terms of the Eisenstein series. In particular we will
see how the intertwining operator M(s, w) appears in the constant term of Eisenstein
series. Langlands observed that [Lan71]

M(s) =

(∏
α

π1/2Γ(1
2
µ∞(s)(Hα))

Γ(1
2
(µ∞(s)(Hα) + 1))

) ∏
p prime

(∏
α

1
1−pµp(s)(Hα)+1

1− 1
pµp(s)(Hα)

)
.

This formula is obviously uninterpretable without further definitions, however we
just want to point out some things to notice. First there is a product over the places
of Q , namely one item for the infinite place and then a product over the prime
numbers. The functions in the product are gamma functions, related intrinsically
to the L-function exemplar ζ, the Riemann-Zeta function, and functions of the form
1 − p−s. These facts should be contrasted with the general setting alluded to in
appendix A

This lead to a general conjecture that there is a holomorphic and non-zero in-
tertwining operator N(s, w) such that

M(s, w) = r(s, w)N(s, w),

and r(s, w) is a ratio of L-functions, as defined by Langlands in for instance [Lan71].

Note that this is the global statement. There is an analogous set of conjectures for
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the local pieces, namely M = ⊗νA the tensor over local intertwiners. Then one wants
a normalisation of the local operators A satisfying a long list of properties. This
is extensively dealt with in [Sha90]. Shahidi showed some cases of this conjecture
in [Sha88]: Let π be an automorphic representation, let S be a finite set of places
such that πν is unramified for ν /∈ S. We have that there are some finite dimensional
complex representations r1, ..., rm of LM such that

M(s, π)f =
⊗
ν∈S

A(s, πν , w)fν ⊗
⊗
ν /∈S

m∏
i=1

LS(is, π, r̃i)

LS(1 + is, π, r̃i)
f̃ν .

Recently it was shown for classical groups that this N indeed has the required
properties. In particular, the following theorem is sufficient for the cases dealt with
in [JLZ13]:

Theorem 0.21 ( [CKPS], 11.1). Suppose that πν is a local component of a globally
generic cuspidal representation π of Gn(A). Then for any irreducible admissible
unitary generic representation π′

ν of GLm(kν) the normalised intertwining operator
N ′(S, π′

ν × πν , w) is holomorphic and non-zero for Re(s) ≥ 0

0.0.4 Poles of Residual Eisenstein Series

Consider the group GLn. We then let n = ab for positive integers a, b. If τ is
an irreducible, cuspidal automorphic rep of GLa then there is a representation of
GLab = GLn called the “Speh representation” denoted

∆(τ, b).

Moeglin and Waldspurger also achieved a more fine analysis of the spectrum of GLn

by proving that as τ and b vary, these representations span the residual spectrum
of L2(GLn(F )\GLn(A)) [JLZ13, Thm. 1.1]. The Speh representation is formed
by taking iterated residues of Eisenstein series in the sense of [MW95, V], a more
concrete explanation can be found in [Bre09, 2.4]. For a nice survey of problems in
this area, of residues of Eisenstein series, there is [Jia08].

The classical groups Ga+b, have maximal parabolics whose Levis decompose into
products GLa × Gb, and so we can use the representation theory of GLn on a Levi
to induce up to the whole group. One step in this direction is the work of [JLZ13],
who locate the poles of Eisenstein series induced in this manner.
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These considerations are supposed to help prove cases of Langlands functorial
transfers, that is proving cases of Langlands functoriality for groups by “transferring”
the known cases of functoriality from other groups. We quote from the introduction
of [JLZ13]:

“The key ingredient in these constructions is to use certain Fourier co-
efficients of special types of residues of certain residual Eisenstein series
as kernel functions in the corresponding integral transforms”

[Bum11] gives some more detail on how the analytic properties of Eisenstein series
and their L-functions imply that the automorphic representations can be lifted to
other groups.

Finally, we remark that we spent a good amount of time trying to understand
the analogous story for the so called “almost algebraic groups”, topological coverings
of G(A). In this setting the work of [JLZ13] has also been applied to get similar
results on poles of metaplectic Eisenstein series, as in [Kap21]. It was also used
to prove certain functoriality results as in [CFK24]. We leave it for future work to
understand the full significance of these calculations, but hope we have motivated
why they might be interesting.

Outline of Content

Chapter one deals with the generalities of linear algebraic groups, the objects whose
representation theory is the subject of discussion. First we define them and then
look at the important subgroups that are used in the study of automorphic forms
arising on the adelic points of these groups. We focus on the classical groups.

Chapter two deals with automorphic forms. We define automorphic forms in
both the Archimedean and adelic places. Finally we give the details of how to view
modular forms as automorphic forms.

Chapter three is dedicated to automorphic representations. We define them and
specify some important constructions that are needed in the final section.

In chapter four we define adelic Eisenstein series and show how they generalise
the classical modular forms also known as Eisenstein series.

Chapter five is dedicated to the constant term in the adelic setting. We first
define them and then go through the process of computing them in great detail for
Eisenstein series.
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Chapter six is a discussion of the concept of the constant term in the Archimedean
place. First we define the constant term of an automorphic form (Archimedean) and
then we show how it is related to the constant term of the Fourier series of a modular
form. Finally we show how the classical Siegel Phi operator can be realised as a
constant term.

Chapter seven is for defining L-functions, the analytic invariants that are central
to the Langlands program. We will give several of the special cases that appear
through out history and the literature.

Finally chapter eight contains some exposition of recent work on the poles of
residual Eisenstein series.
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Chapter 1

Classical Groups

We will recall a small amount of the theory of linear algebraic groups to fix conven-
tions, for a more detailed treatment one should consult the litany of sources on this
matter: For a full treatment see [Mil17] [Mil] [Mil12] [Spr98]. Excellent example
computations can also be found in [Gar97] [Mak] [MT11]. Or for a brief brush up
on the main facts consult Springer’s article in [BC79, I.I.1].

The purpose of this section is to define the key examples and properties of
algebraic groups. We also define the most important subgroups, attempting to
emphasize the role they play in the theory. Throughout we will restrict to the case
of the few classical groups that we define explicitly, however, the theory works much
more generally.

1.1 Definition

An algebraic group is for us a group scheme that is reduced, of finite type and
defined over a field. A linear algebraic group (LAG) is simply an affine algebraic
group.

Proposition 1.1. An algebraic group is affine if and only if it is isomorphic to a
Zariski closed subgroup of GLn.

Proof. The forward implication is [Spr98, 2.3.7(i)]. The converse is the
basic fact that closed sub-schemes of affine schemes are affine [Mum99, II.5.T3].

The idea of LAG’s is that they are matrix groups defined by polynomial equa-
tions, which are the natural combinations of symbols that matrix multiplication will

2
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lead to. This means that they come with the technology of algebraic geometry and
in particular one must be adept at moving between the following equivalences:

Theorem 1.2 ( [Mil12], II.6, III.4). For a field K, then the following categories are
equivalent:

• Group objects in AlgopK

• Representable (in the category of groups) functors AlgK → Group

• Group object in the category of affine schemes over K

• Commutative K-Hopf algebras.

Example 1.3 (Gm). The first example is the “multiplicative group” denoted Gm or
GL1 defined over the field K. This is

Gm
..= Spec

(
K[x, y]/(xy − 1)

)
.

As a representable functor this sends a K-algebra R to HomK(K[x, y]/(xy −
1), R). These are ring maps that are K-linear, and because y = x−1 we know that
f(y) = f(x−1) = f(x)−1 for f ∈ Gm(R). Thus the maps are determined by where
they send x, moreover they always send it to a unit, i.e. Imf ⊆ R×. For each
element r ∈ R× we also have a map sending x → r hence there is an isomorphism
(of sets) between Gm(R) ∼= R×, from which we pull back a group structure.

The other important examples of such groups are the “classical groups”. The
exact groups that an author might mean by classical may vary, so we define them
explicitly here. First let V be a finite dimensional K-vector space with a bilinear
form 〈, 〉. An automorphism of this form is a map α ∈ Aut(V ) such that

〈α(x), α(y)〉 = 〈x, y〉.

Therefore we can consider the space of automorphisms of this form Aut(V, 〈, 〉). This
space, depending on the properties of the bilinear form, will define our classical
groups.

If the form is trivial, by which we mean, ∀x, y 〈x, y〉 = 0 then we define the
general linear group,

GL(V ) ..= Aut(V, 〈, 〉) = Aut(V ).
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If the form is non-degenerate and symmetric ∀x, y 〈x, y〉 = 〈y, x〉 then we define
the orthogonal group,

O(V ) ..= Aut(V, 〈, 〉).

Finally if the form is non-degenerate and skew symmetric ∀x, y 〈x, y〉 = −〈y, x〉
then the symplectic group is,

Sp(V ) ..= Aut(V, 〈, 〉).

There are the further classical groups given by the determinant one subgroups,
SL(V ) and SO(V ) respectively. The naming of Sp(V ) is somewhat serendipitous as
one can show that it is contained in SL(V ). We can make this into a functor from
K-algebras to groups, by sending a K-algebra R to G(V )⊗K R.

Remark 1.4. Often the unitary groups are considered classical, as is the case in
[JLZ13].

1.2 Subgroups

From now on let G be one of the classical LAG defined above, defined over a number
field F with adele ring A.

Remark 1.5. Most everything we say will apply verbatim to so called split reductive
groups, however we lose little in restricting to the classical groups.

Subgroups with special properties allow us to reduce and break up problems
into smaller ones. Here we will briefly review and compute some examples of special
subgroups. The point of these subgroups is two fold. Some of them will help us
perform “induction” from smaller simpler groups to larger ones. Others are there
essentially as a part of the combinatorial data that classifies the groups we are
working with. In particular we need to understand all the pieces of the so called
Langlands-Iwasawa decomposition [GH24, 2.7],

G(A) = M(A)U(A)K = T (A)U(A)K. (1.2.1)

1.2.1 Parabolics, Levis and Unipotents

A subgroup P ⊆ G is called parabolic if G/P is a complete variety. Equivalently
we can ask for P to contain a Borel (see section 1.2.2).
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Completeness is the algebro-geometric analogue of compact, always a desirable
property. The fact that they contain a Borel gives us an algebraic “parametrisation”
of these subgroups, in the case of the classical groups through the use of flags or
roots. It is very important to have a parametrisation of the parabolic subgroups
when it comes to taking constant terms of Eisenstein series which we will discuss in
chapter 5.

A matrix m is unipotent if for some n ≥ 0 we have that (m − 1)n = 0. A
subgroup is unipotent if all its elements are unipotent. The unipotent radical of
G is the maximal closed, connected, unipotent subgroup. A linear algebraic group
is reductive if its unipotent radical is trivial. Then we have the following fact and
definition,

Lemma 1.6 ( [Bor91] 11.22). There is a split exact sequence (of algebraic groups)

0 → U → P → M → 0,

where U is the unipotent radical of P, and M is a reductive group known as a Levi
(unique up to conjugacy).

Thus parabolics and their Levis allows us to induce from a reductive subgroup up
to the reductive group. This is the technique of “parabolic induction” [Ber92, Thm.
10] that we will not explicitly talk about here but which is happening secretly in
the background in section 3.2.2.

Remark 1.7 (Bad Etymology). The origin of the name parabolic is a mystery. Borel
in his history [Bor01, VI.§2] attributes it to R. Godement in [God61]. Godement
conjectures that the quotient G(A)/G(Q) is compact if and only if every element of
G(Q) is semi-simple, as is the case in classical groups (this was shortly thereafter
proven [MT62]). He says that

“Lorsque n’est pas compact, il est non moins facile de conjecturer qu’on
doit pouvoir définir quelque chose d’analogue aux classiques “pointes
paraboliques”, lesquelles doivent correspondre à des sous-groupes unipo-
tents non triviaux de GQ”

which roughly (google) translates to that one can also conjecture that non-trivial
unipotent elements should correspond to “parabolic points” in a fundamental domain.

In the case of modular forms the fundamental domain is H = SL2(R)/ SO2(R)
(for the details see section 2.3). We have the classification of elements of SL2(R)\{±1}
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as in [Bor97, 3.5] via their trace

g is of type


Elliptic if 1

2
|tr(g)| < 1

Parabolic if 1
2
|tr(g)| = 1

Hyperbolic if 1
2
|tr(g)| > 1

.

This classification, it seems, relies entirely on the aesthetic connection with the
classification of the sections of conics via eccentricity. Proper parabolic subgroups of
SL2(R) can be realised as the stabilisers of lines in R2 under the standard action of
SL2 on R2 [Bor97, 2.6] and moreover an element of SL2(R) is parabolic if and only
if it has one fixed point on ∂H̄ and none on H [Bor97, 3.5].

Being parabolic is equivalent to having eigenvalue 1 hence by the Jordan decom-
position we know that parabolics in SL2 are conjugate (over C) to(

1 1

0 1

)
, ±

(
1 0

0 1

)
.

Clearly the standard parabolic (
a b

a−1

)
⊆ SL2(R),

contains these matrices, and moreover all parabolics are conjugate to this parabolic.
Hence all parabolic elements are contained in a parabolic subgroup.

The take away is that perhaps the folklore of the name being for “para-Borelic”,
as in kind of a Borel, is probably a better way of thinking of them.

The Example of Sp2n

We collect the following facts as they will be useful in what is to come. Good
references are the notes [Conb] and the book [Gar97, §8].

Let (V, 〈, 〉) be a symplectic space as above and Sp(V ) is the automorphisms
preserving the form. A flag of V is a sequence of strict inclusions of vector subspaces

{0} ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ V.

A subspace of V is said to be isotropic if the form is constantly zero on it (in both
variables). A flag is isotropic if the proper subspaces in it are isotropic subspaces.
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A maximal isotropic flag is one with exactly n components. Sp2n acts on a flag
by acting on each of the subspaces. This action preserves isotropic flags i.e. it sends
an isotropic flag to an isotropic flag. Stabilisers of isotropic flags give parabolics of
Sp and moreover all parabolics arise in this way [Spr98, Exercise 3.2.16, 6.2.11].

Example 1.8. Consider a four dimensional vector space V with a form given by
the matrix (

I2

−I2

)
,

then a maximal isotropic flag is

0 ⊂ Fe1 ⊂ Fe1 ⊕ Fe2 ⊂ F 4,

where ei = (δij)j (the Kronecker delta). This has stabiliser consisting of matrices in
Sp of the form 

∗ ∗ ∗ ∗
∗ ∗ ∗

∗
∗ ∗

 .

In particular maximal parabolics of Sp are stabilisers of minimal (non-trivial
flags), i.e. stabilisers of non-zero isotropic subspaces,

0 ⊂ V` ⊂ V,

where V` = spanF (e1, ..., e`). Then the stabiliser consists of matrices of the form
∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 ,

with the sizes of the diagonal blocks being (these numbers square)
` ∗ ∗ ∗
0 n− ` ∗ ∗
0 ∗ ` ∗
0 ∗ ∗ n− `

 .
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This has Levi consisting of matrices of form
A

a b

(AT )−1

c d

 , A ∈ GL`(F ),

(
a b

c d

)
∈ Sp2(n−`)(F ),

and unipotent consisting of matrices of form
1 ∗ ∗ ∗

1 ∗
1

∗ 1

 ,

with relations among the entries.

1.2.2 Borel and Torus

A split torus is an algebraic group that is isomorphic to GLb
1 for some b ∈ N.

Example 1.9 (Bad Etymology). GL1 /C is a split torus. Consider the field exten-
sion C/R. Then C has the inner product given by

〈z, z′〉 ..= z̄z′.

We can look at the elements of C that preserve this inner product,

U(1) ..= {c ∈ GL1(C) : ∀z, z′ ∈ C, 〈cz, cz′〉 = czcz′ = z̄z′}

= {c ∈ GL1(C) : |c| = 1}.

Note that this is a (real) line topologically so we do not expect it to be a complex
variety. Indeed this defines a real algebraic group given by the zero locus in R2 of
the two variable polynomial x2 + y2 − 1. In other words,

U(1) ∼= MaxSpec
(
R[x, y]/(x2 + y2 − 1)

)
.

Now if we base change to C we have

R[x, y]/(x2 + y2 − 1)⊗R C ∼= C[x, y]/
(
(x+ iy)(x− iy)− 1

)
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∼= C[s, t]/(st− 1)

∼= C∗.

Thus GL1 /C is the complexification of the torus U(1).

Remark 1.10. These tori also play the same role in the classification of reductive LAG
as the real Lie groups called tori play in the classification of Lie groups [Hal15, Part
III].

A subgroup that is isomorphic to a split torus and is maximal in this respect is
called a maximal split torus.

Example 1.11. The classic example of a maximal split torus is the group of diagonal
matrices in GLn.

A Borel is a maximal, closed, solvable and connected subgroup of G. A Borel
can be considered to be a parabolic that is minimal with respect to inclusion. The
maximal tori then form the Levis of these parabolics. In particular for a Borel B
we have that

B = TU,

for a maximal torus T and unipotent U .

Example 1.12. The standard Borel of GLn is the group of upper triangular matrices.
If n is even and one intersects this Borel with Sp2( 1

2
n) then we get the standard Borel

of Sp2( 1
2
n).

Lets prove this in GL2 and then believe that the only complication to going to
larger n is keeping track of indices. So let

B =

(
∗ ∗

∗

)
,

we need to show that the derived series terminates for it to be solvable. So let

g =

(
x y

z

)
, h =

(
a b

c

)
,

be arbitrary in GL2, their commutator is then

g−1h−1gh =

(
1 bx−ay

ax

1

)
.
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Hence

[B,B] =

(
1 ∗

1

)
.

Commutate two arbitrary elements again shows that

[[B,B], [B,B]] = 1.

It is clear that this is a closed subgroup because it is itself a linear algebraic group,
moreover for LAG’s we have the algebraic criterion of connectedness given by having
the only idempotents in the representing algebra being 0, 1 [GH24, 1.5]. Because
B = SpecZ[xi,j : 1 ≤ i, j ≤ 2][y]/(det(xij)y − 1, x2,1) it is clear that this group is
connected. Finally it is clear that if a subgroup strictly contains the group of upper
triangular matrices then it is in fact all of GL2 and hence this is maximal. Therefore
this is a Borel.

If a Borel B is fixed, then a parabolic containing this Borel B ⊆ P is called
standard, there is a unique Levi of a standard parabolic containing this Borel called
the standard Levi.

1.2.3 The Topology on Points

Let F be a number field and G = SpecF [x1, ..., xn]/(f1, ..., fm) be a LAG over F.
As a locally ringed space this scheme has the Zariski topology, in the theory of
automorphic forms however we wish to topologise the local and adelic points in
a way which accommodates analysis. In particular the topology should be locally
compact and Hausdorff so that we have Haar measures on the groups.

Following [Con12] then we think of G(A) as the subset of An on which the
functions fi : An → A all vanish. We give it the subspace topology which inherits
the local compact and Hausdorff properties from An. If ν is a place of F then we
have the same definition, G(Fν) is the subspace of F n

ν on which fi : F
n
ν → Fν all

vanish and it is endowed with the subspace topology. These topologies are referred
to as the Hausdorff topology.

Remark 1.13. When Fν = C then the Hausdorff topology on G(C) agrees with the
topology of the analytification of G, often denoted Gan.
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1.2.4 Maximal Compact Subgroups

We will often need to fix a maximal compact subgroup K ⊆ G(A) of the Hausdorff
topology. These maximal compact subgroups are not unique and as such when
fixing one it can be arranged to have many convenient properties [MW95, I.1.4]. In
particular if we have a group G and a fixed Borel B:

• First require that
K =

∏
ν

Kν ,

where the product is over all places of F and Kν ⊆ Fν is maximal compact.

• If Oν is the ring of integers of Fν , then for almost all places, G(Oν) is defined
and is maximal compact in G(Fν) hence we can require Kν = G(Oν) at these
places.

• We require
G(A) = B(A)K.

• For every standard parabolic P = MU we have that

P (A) ∩K =
(
M(A) ∩K

)(
U(A) ∩K

)
,

and M(A) ∩K is a maximal compact subgroup of M(A).

It is in terms of the third property that we like to think of the maximal compact
subgroup, it is the complimentary piece of the Borel. Moreover the fourth property
should be thought of as a condition that the maximal compact subgroups are well
behaved with the way that we are moving between the bigger and smaller reductive
groups. Maximal compact groups with all these properties are said to be in good
position with respect to B.



Chapter 2

Automorphic Forms

The story starts with the classical modular forms, or functions on the upper half
plane that satisfy some invariance conditions and differential equations. This evolves
into the notions of Maass form on symmetric spaces and eventually reaches its
apotheosis in the concept of automorphic form that we will present here.

We will present two notions of automorphic form here. In the literature they
are both called “automorphic forms” however here we will distinguish those that are
defined only on the Archimedean points as “Archimedean automorphic forms” for
clarity.

The first natural question is if there is a special case of automorphic forms which
yield modular forms. In fact no, the space of automorphic forms is larger than
just modular forms, however, it gives the space of Maass forms (or modular and
Maas forms, depending on convention). This is well covered in the literature [Eme]
[Bum97, 3.2] [Boo] [Gar16]. We explain modular forms as Archimedean automorphic
forms as we think it is where the connection is clearest. We will give an example of
modular forms as adelic automorphic forms when we come to the Eisenstein series
in section 4.2.

2.1 Archimedean Automorphic Form

Fix a number field F and a classical group G defined over F . Let ∞ denote the
set of Archimedean places. We denote A∞ = F∞

..=
∏

ν∈∞ Fν and note that
G(F∞) ∼=

∏
ν∈∞ G(Fν). We denote Af the finite adeles. Consider ν ∈ ∞ one such

Archimedean place, then Fν is either R or C . In particular (the analytification of)
G(Fν) is a Lie group and we call a function, ϕ : G(Fν) → C, smooth if it is smooth

12
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in the sense of manifolds. The collection of such smooth functions on G(F∞) will
be denoted C∞(G(F∞)).

Because G(F∞) is a Lie group we know how to define its Lie algebra and we now
denote Z(g) the center of the universal enveloping algebra of the complexification of
g, it would be more reasonable to use Z(U(gC)) but that is too cumbersome so we
follow the tradition. A vector in a Z(g)-module ϕ ∈ V is called Z(g)-finite if the
space Z(g)ϕ is finite dimensional.

Let K∞ ⊆ G(F∞) be a maximal compact subgroup. Then again an element of a
K∞-module is K∞ finite if its orbit is a finite dimensional vector space (we think
here of C[K∞]-modules).

To define automorphic forms we look at the representation C∞(G(F∞)) with the
right regular action of K∞, i.e. g.f(x) = f(xg). In particular the Z(g) module
structure is induced from the action of g on C∞(G(F∞)) by

z.F (g) =
∂

∂t
F (getz)|t=0.

Finally we want a growth condition. Fix an embedding ι : G → GLn which gives
another embedding G → SL2n via

ι′ : g 7→

(
ι(g)

(ι(g))−t

)
.

We have denoted the inverse of the transpose −t. A function ϕ : G(F∞) → C is of
moderate growth if there are constants (c, r) ∈ R>0 × R such that

|ϕ(g)| ≤ c‖g‖r = c

(∏
v∈∞

sup
1≤i,j≤2n

|ι′(g)i,j,ν |ν

)r

.

This is taking the maximum of the 2n× 2n× |∞| three dimensional matrix.

Remark 2.1. One can define norms on G(A) via the linearisation of such groups, i.e.
their representations. Concretely if σ is a finite dimensional complex representation
on some Hilbert space with a K∞ invariant inner product and ∗ is the adjoint matrix
with respect to this Hilbert space structure then a norm on G(A) is a function of
the form

g 7→
(
tr σ(g)∗σ(g)

) 1
2 .

This moderate growth condition is then equivalent to some norm ‖−‖ existing on
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G(F∞) such that
|ϕ(x)| ≤ C‖x‖n,

for some C > 0, n ∈ N and all x ∈ G(F∞). This is also equivalent to all such norms
satisfying this condition [BC79, 1.2].

Definition 2.2. Let Γ ≤ G(F∞) some (arithmetic) subgroup, an automorphic
form for Γ is a smooth function of moderate growth

ϕ : G(F∞) → C,

that is K∞ and Z(g) finite with a (left) Γ invariance. We denote the set of these
“Archimedean” automorphic forms by A(Γ\G(F∞)).

2.2 Adelic Automorphic Form

Here we follow [MW95, I.2.17] and [BC79, 1.2]. Fix a Borel B ⊆ G and a standard
parabolic B ⊆ P ⊆ G with a standard Levi decomposition P = MU . We let K be
a maximal compact subgroup of G(A) that is in good position as in section 1.2.4.

We say that f : G(Af ) → C is smooth if it is locally constant in the Hausdorff
topology and we denote the set of such smooth functions C∞(G(Af )).

Thus for the full adeles we have the notion of smooth as an element of the tensor
product,

C∞(AF ) ..= C∞(G(Af ))⊗ C∞(G(F∞)).

Notice that a priori the codomain is an infinite tensor product over C of copies of
C , this is canonically isomorphic to C , thus we can conflate a smooth function
with its composition along this isomorphism and think of them as functions into C .

We still consider Z(g) to be the center of the universal enveloping algebra of
the complexified Lie algebra at the infinite places, exactly as before. We define an
action by linearly extending

z.(f ⊗ g) = f ⊗ (z.g),

i.e. it acts on the Archimedean places as in the setting of Archimedean automorphic
forms.

The definition of moderate growth carries over verbatim, however we change the
set of places multiplied over to be all of them now.
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Remark 2.3 ( [BC79], 1.II.3). The collection of moderate growth functions is inde-
pendent of the choices of embedding.

Definition 2.4. A function ϕ : U(A)M(F )\G(A) → C is an automorphic form
if it is smooth, moderate growth, Z(g) and K finite. We will denote the set of these
automorphic forms by A(U(A)M(F )\G(A)).

Remark 2.5. It is important that M(F ) is treated as a subgroup of M(A) via the
diagonal embedding.

Remark 2.6. What we have called automorphic forms are sometimes referred to as
“smooth K-finite automorphic forms” [Cogc, 2.2].

2.3 Modular Forms

Recall the definition of a modular form of weight k (of full level and trivial
character) [DS05, 1.1.2] as a function

ϕ : H → C,

where H is the upper half plane in C , that is holomorphic, satisfies

ϕ(γ.z) = (cz + d)kϕ(z), γ =

(
a b

c d

)
∈ SL2(Z),

and is of moderate growth.
We want to think of the upper half plane as a quotient of the Q∞ = R points of

some reductive group. If we have a transitive action of some reductive group then
by the orbit stabiliser theorem we would have a bijection of sets.

Theorem 2.7.
H ∼= SL2(R)/ SO2(R),

as sets.

Proof. Consider the action

SL2(R) y H :

(
a b

c d

)
.z =

az + b

cz + d
.
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Then look at the orbit of i, namely(
a b

d

)
.i =

ai+ b

d
= a2i+ ab,

which letting a, b ∈ R vary is clearly surjective onto the whole upper half plane.
So there is one orbit, and hence by the orbit stabiliser we know that

H ∼= SL2(R)/stab(i),

so we want to find

stab(i) =

{
g =

(
a b

c d

)
∈ SL2(R) : g.i = i

}
,

in particular we solve

i = g.i =
ai+ b

ci+ d
= (c2 + d2)−1(ac+ bd+ i det g).

So equating coefficients we have

det g(c2 + d2)−1 = 1 =⇒ c2 + d2 = det g = 1,

on the other hand
ac+ bd = 0.

Now the pairs c2 + d2 = det g = 1 are parameterized by θ ∈ [0, 2π) using c =

sin θ, d = cos θ hence subbing this into the above equation

−b

a
= tan θ,

and so b = −k sin θ, a = k cos θ for some k ∈ R but the determinant must be 1 so
k = 1. Hence

stab(i) =

{(
cos θ − sin θ

sin θ cos θ

)
: θ ∈ [0, 2π)

}
= SO2(R).

Remark 2.8. This can be beefed up to an isomorphism of complex analytic spaces.
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Sometimes to make the action of certain (Hecke) operators more apparent this is
exhibited as

H ∼= GL+
2 (R)/AGL2 SO2(R).

This obscures the connection with the reductive group setting however so we avoid
it here.

SL2 is a reductive group and SO2(R) is its maximal compact subgroup. This
decomposition of the upper half plane suggests that function on it might have some
invariance along the maximal compact subgroup of the reductive group SL2.{(

y1/2 xy−1/2

y−1/2

)
: x, y ∈ R, y 6= 0

}
SO2(R) = SL2(R) SL2(R)/ SO2(R) H

SL2(Z) \ SL2(R)

∼project

g 7→g.i

project

We can lift a function on SL2(R)/ SO2(R) to SL2(R) by composing with the
projection, however this is not SL2(Z) invariant, thus we need to add a pre-factor to
ensure this in our associated automorphic form. The algebro-geometric perspective
in [Eme] can make this seem slightly less ad hoc.

Thus for f a modular form of weight k the following function on SL2(R)

F (g) ..= (ci+ d)−kf(g.i),

we claim is an automorphic form for SL2(Z). We take for granted its smoothness.
The SL2(Z) invariance is obvious from the modularity condition and we consider
the moderate growth condition to be tautological. It remains to show the last two
properties:

Lemma 2.9. SO2(R) is a maximal compact subgroup inside SL2(R). F is an SO2(R)
finite function.

Proof. Using that κ ∈ K = SO2(R) acts trivially on i, an elementary
computation shows that for g ∈ SL2(R),

F (gκ) = e−ikθF (g).

Hence F (g) is acted on by K via a one dimensional irreducible representation. In
particular it is finite dimensional.
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Lemma 2.10. F is a Z(sl2) finite function.

Proof. Only a sketch.
The center of the universal enveloping algebra of the complexified Lie algebra

is generated by the Casimir operators. We have the coordinates on SL2(R) from
[Bum97, 1.19] {(

y1/2 xy−1/2

y−1/2

)
: x, y ∈ R, y 6= 0

}
SO2(R),

in which in which the Casimir acts as the differential operator

∆ = y2

((
∂

∂x

)2

+

(
∂

∂y

)2
)

− y
∂2

∂x∂θ
,

[Bum97, 1.29,Prop 2.2.5]. Now we claim that F is an eigenfunction for this

operator. An element (x, y, θ) ..=

(
y1/2 xy−1/2

y−1/2

)
κθ ∈ SL2(R) acts on i by

sending it to x + iy (elementary computation). The bottom row of the product
is y−1/2 sin θ; y−1/2 cos θ which results in

F (x, y, θ) = yk/2e−ikθf(x+ iy).

It is then a calculus exercise to apply ∆ to this, using the holomorphicity we also
get that fxx − fyy = 0 and fy = ifx which cancels away terms and we get that

∆F (x, y, θ) =
k

2

(
k

2
− 1

)
F (x, y, θ).

Therefore the dimension of Z(g)F is simply one.

This example makes it clear that the two finiteness conditions for automorphic
forms are in some sense functional equations that they must satisfy. There is a nice
explanation of how to lift this to the adelic setting in several places, the key is the
isomorphism

SL2(R) ∼= Z(A)GL2(Q)\GL2(A).

The details are quite clear in [Cogc, 2.1] or [Boo]. We will revisit this perspective
through the example of the Eisenstein series in section 4.2.
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Automorphic Representations

The references that will be most helpful are [BC79, I.II] [GH24] for the general
theory, we will follow the notation developed in [MW95] as it is somewhat standard.
We will discuss some of the details of their representation theory because it is both
subtle and essential for the setup in [JLZ13]. In particular we want to draw attention
to some of the quirks of the category of automorphic representations.

3.1 Local Representation Theory

Recall that in the representation theory of finite groups over C there is really only
one important representation, that is the regular representation i.e. the C[G] module
C[G]. This is important for two reasons, the first is that it is always a priori defined
uniformly for all groups, the second is that it decomposes into a direct sum over all
irreducible modules [Ser96, Ch. 2.4 Cor. 2 ].

Let G be a classical group defined over a number field F . As in the finite group
case we want to consider the right regular action of the adelic points, G(A), on a
space of functions G(A) → C, namely

g.f(x) = f(xg).

One can ask if this representation sends an automorphic form to an automorphic
form. If ϕ(x) ∈ A(U(A)M(F )\G(A)) and g ∈ G(Af ) then ϕ(xg) ∈ A(U(A)M(F )\G(A)).
Hence A(U(A)M(F )\G(A)) is a G(Af )-module. In particular it is a module for
G(Fν) for all ν non-Archimedean.

There is a problem with the K-finiteness in the infinite places however which

19
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prevents A(U(A)M(F )\G(A)) from being a full G(A) module.

Example 3.1 ( [Cogc], 2.3). If ϕ ∈ A(Γ\G(F∞)) is K∞-finite, then g.ϕ is gK∞g−1-
finite. This is still a maximal compact subgroup, however in the infinite place it will
a priori have only the identity in common with the original K.

For example consider SL2 where the maximal compact is SO2, if we conjugate
we get g SO2 g

−1

(
a b

c d

)(
cos θ − sin θ

sin θ cos θ

)(
d −b

−c a

)
=

(
cos θ + (db+ ca) sin θ − sin θ(a2 + b2)

sin θ(d2 + c2) cos θ − (bd+ ac) sin θ

)
.

If we want to find the intersection of SO2 with g SO2 g
−1 we need to solve the

system(
cos θ′ − sin θ′

sin θ′ cos θ′

)
=

(
cos θ + (db+ ca) sin θ − sin θ(a2 + b2)

sin θ(d2 + c2) cos θ − (bd+ ac) sin θ

)
.

Where θ might not be θ′. If θ = nπ, n ∈ Z then the sin terms on the right vanish
and we get the ±1 as a point of intersection, so consider θ 6= nπ. Then we require

cos θ′ = cos θ − (bd+ ac) sin θ = cos θ + (db+ ca) sin θ,

hence 2(bd + ac) sin θ = 0 and because sin θ was assumed to be non-zero this is the

same as bd + ac = 0. Thus for instance the element

(
1 1

1

)
conjugates SO2 to

another subgroup that has only trivial intersection.
Finally it is worth noting that this is not an issue at the finite places, namely

if K = KfK∞ is our maximal compact subgroup of G(A) then Kf is also open and
hence Kf ∩ gKfg

−1 is of finite index in both Kf and gKfg
−1 and so their notions

of K-finiteness will agree.

For this reason we will need to talk about (g, K)-modules:

Definition 3.2 ( [GH24], 4.4.6). Let G be a real Lie group (for example the ana-
lytification of the real or complex points of our favourite reductive LAG) and K be
a maximal compact subgroup of G. Let gC be the complexification of the real Lie
algebra of G and k the real Lie algebra of K.
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A (g, K)-module is a complex vector space V with two representations

π̃ : g → End(V ), π : K → GL(V ),

satisfying the following axioms

1. V decomposes into a countable direct sum of finite dimensional K represen-
tations.

2. The representations should be compatible: For all X ∈ k and v ∈ V

π̃(X)(v) =
d

dt
π(etX)(v)|t=0 = lim

t→0

π(etX)(v)− v

t
.

In particular the right hand limit exists.

3. And compatible with the adjoint representation: For k ∈ K and X ∈ g

π(k)π̃(X)π(k−1)(v) = π̃(Ad(k)(X))(v).

Remark 3.3. It is common to use the same symbol for both of these representations
in the (g, K)-module. It is also important to note that these are purely algebraic
representations, there is no condition of continuity etc.

If g is the Lie algebra of G(F∞) and K∞ ⊆ G(F∞) is a maximal compact sub-
group in good position we can define a (g, K∞)-module structure on the space of
automorphic forms as follows. Recall that by definition we have that

A(U(A)M(F )\G(A)) ⊆ C∞(G(Af ))⊗ C∞(G(F∞)).

If ϕf ⊗ ϕ∞ ∈ A(U(A)M(F )\G(A)) and (gf , g∞) ∈ G(A) then K∞ acts by

k.(ϕf ⊗ ϕ∞)(g) ..= ϕf (g)⊗ ϕ∞(gk),

i.e. via the right regular representation on the Archimedean component. We extend
this linearly from pure tensors to all tensors. The lie algebra of G(F∞) acts by
linearly extending the action we have previously defined in section 2.1, via

z.(ϕf ⊗ ϕ∞)(gf , g∞) = ϕf (gf )⊗
∂

∂t
ϕ∞(g∞etz)|t=0.
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To see that we have really fixed the K∞ problem we should check that this really
defines an action.

Lemma 3.4. If ϕ ∈ A(Γ\G(F∞)) is K∞-finite and X ∈ g then X.ϕ is K∞-finite.

Proof. There is an action of K∞ on g ⊗ C∞(Γ\G(F∞)). If k ∈ K∞, ϕ ∈
C∞(Γ\G(F∞)) and X ∈ g then the action is given by linearly extending

k.(X ⊗ ϕ) = Ad(k)(X)⊗ k.ϕ.

The map

g⊗ C∞(Γ\G(F∞)) → C∞(Γ\G(F∞)), X ⊗ ϕ 7→ Xϕ, (3.1.1)

is K∞ equivariant by the definition of the adjoint action. Now if ϕ ∈
A(Γ\G(F∞)) then its span is a finite dimensional K∞ module which we will
denote Mϕ. Then k.Xϕ is in the image of g ⊗ Mϕ under the map 3.1.1. But
the Lie algebra is finite dimensional and Mϕ is finite dimensional so this image
is finite dimensional. Therefore the K∞ span of Xϕ is finite dimensional and so
Xϕ is K∞-finite.

Finally the conditions for these representations to be a (g, K∞) module can be
checked. (1) is [GH24, Thm. 6.3.4]. (2) is immediate from the definitions of the two
representations and the fact that automorphic forms are smooth. (3) is immediate
from the definition of the adjoint action.

3.2 Automorphic Representations

Recall that if A,B,C are all R modules and we have the inclusions of R modules C ⊆
B ⊆ A then we call B/C a subquotient of A. We now think of A(U(A)M(F )\G(A))
as being a G(Af ) × (g, K) module. An automorphic representation is then a sub-
quotient of this representation.

Remark 3.5. Some authors will require that an automorphic representation is by
definition an irreducible subquotient.

Remark 3.6. We really need a set theoretic definition here. The quotient of these
modules cannot be considered up to isomorphism of (g, K)-modules but must be
the classical set theoretic realisation of this object, defined as equivalence classes
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of elements of the module. This is to say if one were to think of the category of
automorphic representations it is much smaller than the category of G(Af )×(g, K)-
modules (in particular the cardinality of the category of automorphic representations
is bounded, whilst there is a proper class of G(Af )-modules). The reason is that
we will want to talk about the automorphic forms themselves, and consider their
properties.

Remark 3.7. Automorphic representations can also be defined as representations of
an algebra H, the global Hecke algebra. This is the approach in [BC79, I.II(4.6)],
and can be a helpful perspective to simplify definitions. This is also a motivation
behind why Harish-Chandras (g, K)-modules are the “right” replacement for the
regular representation.

Example 3.8. It is very hard to really write down something explicit. One thing
that we can do is take a modular form f . Then we know how to associate a concrete
automorphic form to it f̃ . To any fixed automorphic form we have an automorphic
representation given by taking the span of its orbit

spanC

{(
G(Af )× (g, K)

)
.f̃

}
⊆ A(U(A)M(F )\G(A)).

3.2.1 Cuspidal Representations

Recall that an automorphic form ϕ ∈ A(U(A)M(F )\G(A)) is called cuspidal if
all its constant terms vanish, see section 5.1 for more detail on constant terms.
The space of such automorphic forms is denoted A0(U(A)M(F )\G(A)). An au-
tomorphic representation is called cuspidal if it is an irreducible subquotient of
A0(U(A)M(F )\G(A)).

Remark 3.9. Again this is not as a (g, K)-module.

3.2.2 Isotypic Components

Following the convention of [MW95, II.1] we make two cases: Let π be an irreducible
subquotient of the space A(M(k)\M(A)), that is not cuspidal. Then we denote the
π isotypic component of A(M(k)\M(A)) by A(M(k)\M(A))π.

We will also need the space

A(U(A)M(F )\G(A))π
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..= {ϕ ∈ A(U(A)M(F )\G(A)) : ∀k ∈ K, ϕk ∈ A(M(k)\M(A))π},

where ϕk : M(A) → C is given by ϕk(x) = ϕ(xk).
Now if π is cuspidal, we define A(M(k)\M(A))π to be the isotypic component

of π in A0(M(k)\M(A)) and similarly we have

A(U(A)M(F )\G(A))π
..= {ϕ ∈ A0(U(A)M(F )\G(A)) : ∀k ∈ K, ϕk ∈ A0(M(k)\M(A))π}.

Remark 3.10. We cannot simply take the isotypic components as (g, K)-modules we
need to take the isotypic components after explicitly restricting the spaces. This is
to say again that the category of automorphic reps is very explicit.

The point is that we want the isotypic component corresponding to a cuspidal
representation to be cuspidal, however this just might not be the case. Yamana
in [Yam13, Rm. 7.12] has a counter example when one allows unitary groups over
division algebras (non-commutative fields). It could be interesting to investigate this
example more closely to see if the example can be pulled back to a unitary group
over a field. In [Yam13] there is an automorphic representation of the quarternionic
unitary group constructed, Π(V ), that appears in both the cuspidal and residual
spectrum. By that Yamana means that up to isomorphism the representation can
been seen in both residual and cuspidal spectrum. In particular if one were to take
the component that is in the cuspidal spectrum and look at its isotypic component
then the versions in the residual spectrum would also occur and hence by definition
of residual spectrum would not be cuspidal.

If we restrict to the cases dealt with in for instance [MW95], namely not dealing
with quarternions, then we have been told that this is an open problem whether or
not this restriction is superfluous.



Chapter 4

Eisenstein Series

The Eisenstein series is from our perspective the most important tool in the theory
of automorphic forms. Some surveys on its role, properties and open problems
are [Lap22], [Art79], [Kim] and [Jia08]. To see the relation to the classical Eisenstein
series there is [Gar16] which we will also go through in section 4.2. One thing that
Eisenstein series do, as in the theory of modular forms, is that they furnish us
with quasi-concrete examples of automorphic forms. Another reason that these
functions are important is through their normalisation and constant terms, in which
products of L functions appear, we discuss this more in section 5.1. This has been a
fruitful method for proving theorems about L-functions as in [Sha10] [Pol] [Art79],
or conversely proving theorems about Eisenstein series [JLZ13].

4.1 Eisenstein Series

As usual we fix a classical group G defined over a number field F, with a Borel B
and a standard parabolic with Levi decomposition P = MU .

Following the setup in [MW95, I.1.4] we consider a character χ ∈ Rat(M) ..=

HomLAG(M,Gm), thinking of it below as a natural transformation, and then define

|χ| : M(A) → C, (mν) 7→
∏
ν

|χ(Fν)(mν)|ν .

The intersection of the kernels of these characters is

M1 ..=
⋂

χ∈Rat(M)

ker |χ|.

25
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The collection of characters of M(A) that are trivial on M1 is denoted

XM
..= HomTopGroup(M(A)/M1,C∗).

Remark 4.1. To make it seem less mysterious we comment that this group has some
importance in the more general theory. It is one of the pieces in the “Langlands
decomposition” of the Archimedean points of a parabolic P = MU , if ν is an
Archimedean place then,

P (Fν) = AMM1(Fν)U(Fν).

We will not define AM . It also has the property that M(Q)\M(A)1 has finite
measure [GH24, 4.9].

The set of complex characters of M ,

a∗M
..= Rat(M)⊗Z C,

is isomorphic as C vector spaces to XM [MW95, I.1.4]. If ZG(A) is the center of G(A)
then we also have the space

XG
M

..= HomTopGroup((M(A)/M1)/ZG,C∗),

which is characters of M(A)/M1 which are also trivial on the center of G.

Example 4.2. For the maximal parabolic Pr with Levi Mr of Sp2n we have that
X

Sp2n
Mr

is at most a one dimensional C vector space.

First of all we have that [MW95, I.1.4]

X
Sp2n
Mr

⊆ XMr
∼= a∗Mr

..= Rat(Mr)⊗Z C.

Thus it is clearly sufficient to bound the dimension of a∗Mr
as a C vector space,

moreover this dimension agrees with the dimension of Rat(Mr) as a free Z module.
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Thus we compute dimZ (Rat(Mr)):

Rat(Mr) = Rat(GLr × Sp2m)

= Hom(GLr × Sp2m,Gm)

(1) ∼= Hom(Ab(GLr × Sp2m),Gm)

(2) ∼= Hom(Ab(GLr)× Ab(Sp2m),Gm)

(3) ∼= Hom(Gm × 1,Gm)

∼= Z.

In (1) we have used the universal property of the abelianisation Ab(G) = D(G)\G =

[G,G]\G because Gm is Abelian. (2) is that the abelianisation commutes with direct
products. (3) is because Sp is a perfect group.

There is the natural map mP : G(A) → M1\M(A) sending umk 7→ M1m, where
g = umk using the Langlands-Iwasawa decomposition of equation 1.2.1.

Now if we take the collection of irreducible automorphic representations of M ,

M̂ ..= {(π, V ) : π is an irreducible automorphic representation of M},

then we can think of XG
M as being one dimensional automorphic representations

(with some extra invariance) and so there is a natural action on M̂ given by ten-
soring, i.e. if λ ∈ XG

M and (π, V ) ∈ M̂ then

λ.π ..= λ⊗ π.

Then M̂ decomposes as a disjoint union of its orbits. The orbit P of a cuspidal
representation π0 is called a cuspidal datum. By definition XG

M acts transitively
on any cuspidal datum P but by [MW95, II.1] it also acts freely. Thus P is in
bijection with XG

M . Through this bijection we transmit the complex structure on
a∗M to XM then to the quotient XG

M and finally to P.

Let P be a cuspidal datum with a complex structure as above. Let π ∈ P and
ϕπ ∈ A(U(A)M(k)\G(A))π, then λ ∈ XG

M acts on ϕπ by

λ.ϕπ(g) = (λ ◦mP )(g)ϕπ(g),

which is then an element of A(U(A)M(k)\G(A))π⊗λ. Finally we have the Eisen-
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stein series which is defined by the following sum

E(ϕπ, λ, g) =
∑

γ∈P (k)\G(k)

λ.ϕπ(γg),

whenever it is convergent. The first thing to note is that for a fixed ϕ there is an
open set in XG

M and a compact subset of G(k)\G(A) such that the Eisenstein series
converges (normally) [MW95, II.1.5].

If P = MU,P ′ = M ′U ′ are two standard parabolics of G that are conjugate, i.e.
such that for w ∈ G(k) we have wMw−1 = M ′. Then w maps P to wP, an orbit of
an irreducible representations of M to an orbit of irreducible representations of M ′.
The Eisenstein series is closely related through its constant terms (as discussed in
section 5.2.3) to the operator

M(w, π)(ϕπ)(g) =

∫
(U ′(k)∩wU(k)w−1)\U ′(A)

ϕπ(w
−1ug)du,

where π ∈ P, g ∈ G(A) and ϕπ ∈ A(U(A)M(k)\G(A))π.

The Eisenstein series has three inputs and can be considered as a function in
different variables. If π is a cuspidal automorphic representation induced from P ,
then for a fixed ϕ ∈ A0(U(A)M(k) \ G(A))π the Eisenstein series E(ϕ) can be
thought of as a function from some open subset of the cuspidal datum P into L2

loc(G),
the set of locally square integrable complex valued functions on G(A), given by

E(ϕ)(λ)(g) =
∑

γ∈P (k)\G(k)

λ.ϕ(γg), λ ∈ P, g ∈ G(A),

where it converges. The space L2
loc(G(A)) can be endowed with a Frechet space

structure coming from the semi-norms associated to compact sets C ⊆ G(A) given
by

ϕ 7→ ‖ϕ|C‖L2 =

∫
C

|ϕ(x)|2dx.

Then it makes sense to talk about the holomorphicity of E(ϕ) in this sense [MW95,
I.4.9]. The key properties of both the Eisenstein series and this operator can be
found in [MW95, IV.1.8, IV.1.9, IV.1.10, IV.1.11]. Most importantly as a function
of P it can be shown that they both have a meromorphic continuation to all of P.
This was also given a second “soft proof” more recently in [BL23], with the spectral
decomposition that follows from it also being worked out in [Del21]. Moreover an
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Eisenstein series attached to an automorphic form, at a point p ∈ P at which it is
holomorphic, is also an automorphic form.

4.2 Classical Eisenstein Series

We will follow the excellent exposition in [Gar16], the section [BVDGHZ08, 1.2] on
classical Eisenstein series. The typical example of a classical Eisenstein series is that
defined on s ∈ C by the meromorphic continuation of the sum

E(z, s) ..=
1

2

∑
(m,n)∈Z2\{(0,0)}, coprime

Im(z)s

|mz + n|2s
, z ∈ H,

which converges absolutely for Re(s) > 1
2
. Consider the algebraic group SL2 with

the parabolic of upper triangular matrices P .
First we want to look at the index of the sum, we aim to define a map

ω : P (Z)\ SL2(Z) → {(m,n) ∈ Z2\{(0, 0)} : m,n are co-prime}.

The cosets of P (Z)\ SL2(Z) look like

P (Z)

(
a b

c d

)
=

{
±

(
1 n

1

)(
a b

c d

)
: n ∈ Z

}
=

{
±

(
a+ nc b+ nd

c d

)
: n ∈ Z

}
.

Moreover because

(
a b

c d

)
∈ SL2(Z) we have by Bezout’s lemma (applied to the

determinant expression) that c and d are co-prime. Therefore there is a well defined
map

P (Z)\ SL2(Z) → {(m,n) ∈ Z2\{(0, 0)} : m,n are co-prime},

if we denote the indicator function 1(c < 0) then it is given by{
±

(
a+ nc b+ nd

c d

)
: n ∈ Z

}
7→ (|c|, (−1)1(c<0)d).

The point is that |mz + n| = |(−m)z + (−n)| and so the sum in the Eisen-
stein series, having a prefactor of a half is really just the sum over {(m,n) ∈
Z2\{(0, 0)} : m,n are co-prime and m ≥ 0}, which by our argument is in bijec-
tion with P (Z)\ SL2(Z) via ω.
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Lemma 4.3 ( [Gar16], 3.5).

P (Z)\ SL2(Z) ∼= P (Q)\ SL2(Q).

Proof. The bijection is explicitly

P (Z)g 7→ P (Q)g.

Injectivity is clear because if g, g′ ∈ SL2(Z) are in the same P (Q) orbit then
we can cancel the denominators of the P (Q) matrix and hence g, g′ are in the
same P (Z) orbit.

Surjectivity follows from a repeated application of the orbit stabilizer theorem,
as in [Gar16, 3.5].

Recall that SL2(Z) acts via Mobius transformations on the upper half plane. If

z = x+ iy ∈ H, s ∈ C and γ =

(
a b

c d

)
∈ SL2(Z) then an elementary computation

shows that,
Im(γ.z) =

Im(z)

|cz + d|2
.

Hence the classical Eisenstein series is

E(z, s) ..=
1

2

∑
m,n∈Z, coprime

Im(z)s

|mz + n|2s
=

∑
γ∈P (Q)\ SL2(Q)

Im(γ.z)s,

Where these sum are notation for their meromorphic continuation to the complex
plane.

We want to realize this as the Eisenstein series associated to an automorphic
form so first we must design a function on SL2(A). For any place ν of Q we have
the local Iwasawa decomposition SL2(Qν) = P (Qν)Kν where

Kν
..=

SL2(Zν), ν non-Archimedean

SO2(R), ν Archimedean
.

are the local maximal compact subgroups. We define a function on the adeles by
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defining it on the local pieces,

ϕν,s

((
a b

d

)
k

)
..=

∣∣∣a
d

∣∣∣s
ν
.

Finally we define ϕs as the map

(gν)ν 7→
∏
ν

ϕν,s(gν).

Lemma 4.4. ϕs is an automorphic form on SL2(A).

Proof. Smooth, moderate growth and K-finiteness are obvious from the
definition. Using the product formula, i.e. for all x ∈ Q× we have that

∏
ν |x|ν =

1, we get that ϕs is left SL2(Q) invariant. Z(g) finiteness can be checked using
the known Casimir of the Lie algebra of SL2(R), which we again omit.

To this we have an Eisenstein series associate as in the adelic setting by

E(ϕ, g) ..=
∑

γ∈P (Q)\ SL2(Q)

ϕs(γg).

Lemma 4.5. Let g ∈ SL2(R) then we consider it as an element of SL2(A), denoted
by ι(g), by setting all other entries to 1. Then

E(ϕs, ι(g)) = E(g.i, s)

Proof. First the left hand side,

E(ϕs, ι(g)) =
∑

γ∈P (Q)\ SL2(Q)

ϕs(γι(g))

=
∑

γ∈P (Z)\SL2(Z)

∏
ν

ϕν,s(γgν)

=
∑

γ∈P (Z)\SL2(Z)

ϕ∞,s(γg)
∏
ν<∞

ϕs,ν(γ)

=
∑

γ∈P (Z)\SL2(Z)

ϕ∞,s(γg).

Because γ ∈ SL2(Z) ⊆ SL2(Zν) for each place ν and so ϕs,ν is by definition trivial
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on these. The final step is then to show that

ϕ∞,s(g) = |Im(g.i)|s.

If

(
a b

c d

)
∈ SL2(R) then for some k ∈ SO2(R) we have that [Conc],

(
a b

c d

)
=

(
(a2 + c2)

1
2 ∗

(a2 + c2)−
1
2

)
k.

With this explicit Iwasawa decomposition the proof is finished with some elemen-
tary matrix manipulation, this is done very explicitly in [Gar16, 3.3].



Chapter 5

Constant Terms of Eisenstein
Series

This section is a discussion of the adelic constant term, especially its application to
the Eisenstein series.

Through constant terms we can define cusp forms which play a central role in
the theory of automorphic forms. They appear historically as interesting examples
such as the Ramanujan tau function, by a theorem of Ribet [SZS77, T2.3] the Galois
representation associated to a cusp form is irreducible and they form the “base case”
for proofs, for example the spectral decomposition in [MW95].

Constant terms preserve analytic properties whilst sometimes reducing the func-
tions to more tractable forms. This is how they will be used in our calculation of
poles of Eisenstein series.

5.1 Definition and Role

Consider P = MU a standard parabolic of a classical group G and ϕ : U(k)\G(A) →
C a measurable and locally L1 function then its constant term along P is defined
to be [MW95, I.2.6],

ϕP : U(A) \G(A) → C,

ϕP (g) ..=

∫
U(k)\U(A)

ϕ(ug)du.

We have dedicated the next chapter (6) to showing how this is related to classical
notions of constant terms. If ϕ is smooth or moderate growth then so is its constant
term. Moreover if ϕ is an automorphic form on G(A) then its constant term is an
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automorphic form on M(A) [GH24, 6.5].
Let ϕ be an automorphic form on U(A)M(k) \ G(A) for P = MU a standard

parabolic. Then ϕ is cuspidal if for all standard parabolics P ′ ⊂ P we have that
ϕP ′ is identically zero.

Theorem 5.1 ( [MW95], I.4.10). Let P = MU be a standard parabolic of G.
If π is a cuspidal automorphic representation induced from P , then for a fixed
ϕ ∈ A0(U(A)M(k) \G(A))π the Eisenstein series E can be thought of as a function
from some open subset of the cuspidal datum P into L2

loc(G(A)) given by

E(p)(g) =
∑

γ∈P (k)\G(k)

λ.ϕ(γg), p ∈ P, g ∈ G(A),

where it converges. If D ⊆ P, is an open subset minus a finite number of points on
which E is holomorphic then E has a holomorphic continuation to the finite number
of points if and only if the constant term of EQ has a holomorphic continuation to
these finite number of points for all standard parabolics Q.

Remark 5.2. The theorem in Moeglin and Waldspurger is proved in much more
generality, however after sufficient symbol pushing this is the essence.

So one can say that the poles of an Eisenstein series are controlled by its constant
terms. We can say more:

Theorem 5.3 ( [MW95], II.1.7). The constant term of an Eisenstein series induced
from a standard maximal parabolic P is zero along any other standard parabolic P ′

unless P = P ′.

Putting these two theorems together we see that for an Eisenstein series induced
from a maximal parabolic P , has a holomorphic continuation to a point if and only
if its constant term along P has a holomorphic continuation.

5.2 Constant Terms of Eisenstein Series

This computation forms the heart of a well known theorem, [GH24, Prop 10.4.2]
[MW95, II.1.7] [Sha10, 6.2]. Notice that the Eisenstein series has a full G(k) invari-
ance and so we can take its constant terms along any standard parabolic.

Also note that we assume the computations are taking place in the domain of
P on which the Eisenstein series is given by the sum formula. By the uniqueness
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of meromorphic continuation taking constant terms commutes with meromorphic
continuation.

5.2.1 In General

We will use the following Lemmas to give a simplified expression of the constant
term of an Eisenstein series. Let G be a classical group over a number field F, fix
a Borel B = TU0 and fix P = MU and P ′ = M ′U ′ two standard parabolics. Let
E(x, ϕ, λ) be defined from P as in section 4.1.

The Weyl group of G is

WG
..= NormG(F )T (F )/CentG(F )T (F ),

where G(F ) acts on T (F ) by conjugation. Note that this is independent of the
choice of Borel and Levi.

Lemma 5.4.

P (F ) \G(F ) ∼=
∐

w∈WM′\WG/WM

P ′(F ) ∩ wP (F )w−1 \ P ′(F ).

Proof. Consider the Bruhat decomposition:

G(F ) =
∐

w∈WM′\WG/WM

P (F )w−1P ′(F ).

Then because the action of P (F ) keeps the disjoint sets disjoint we can move the
quotient through and get

P (F ) \G(F ) =
∐
w

P (F ) \ P (F )w−1P ′(F ).

Analysing the summands, by the second isomorphism theorem we have a bijection

P (F ) \ P (F )w−1P ′(F ) ∼= P (F ) ∩ P ′(F ) \ w−1P ′(F ).

If [w−1p] ∈ P (F ) ∩ P ′(F ) \w−1P ′(F ) then its represented by some pw−1p′ where
p ∈ P (F ) ∩ P ′(F ) and hence multiplying by w, in particular an isomorphism,
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gives wpw−1p′ ∈ wP (F )w−1 × P ′(F ) and so

w(P (F ) ∩ P ′(F ) \ w−1P ′(F )) ∼= wP (F )w−1 ∩ P ′(F ) \ P ′(F ).

Lemma 5.5. Let m′ ∈ M ′(F ), u′ ∈ U ′(F ) then

m′u′ ∈ wP (F )w−1 ⇐⇒ m′ ∈ wP (F )w−1 and u′ ∈ (m′)−1wP (F )w−1m′.

Proof. The forward implication is stated in [GH24], the converse follows
from some algebra: First let m′ = wp1w

−1 and u′ = (m′)−1wp2w
−1m′ then

m′u′ = (wp1w
−1)−1wp2w

−1wp1w
−1

= wp−1
1 w−1wp2w

−1wp1w
−1

= wp−1
1 p2p1w

−1 ∈ wP (F )w−1.

Taking the contrapositive of this lemma will be used below. This is because our
sums will be over quotients like A\B and therefore summing over the “elements” in
B that are not in A; by our lemma would be the same as summing over two different
such quotients. Now we will apply our lemmas to simplify and make more explicit
the constant term of an Eisenstein series. Denote [U ′] ..= U ′(F ) \ U ′(A)

EP ′(ϕ, λ, x) =

∫
U ′(F )\U ′(A)

E(ϕ, λ, nx)du

=

∫
[U ′]

∑
δ∈P (F )\G(F )

λ.ϕ(δnx)du

(Lemma 5.4) =

∫
[U ′]

∑
δ∈

∐
w∈WM′ \WG/WM

P ′(F )∩wP (F )w−1\P ′(F )

λ.ϕ(δux)du

=
∑

w∈WM′\WG/WM

∫
[U ′]

∑
p′∈P ′(F )∩wP (F )w−1\P ′(F )

λ.ϕ(w−1p′ux)du.

Now apply Lemma 5.5 to the above sum to see that it is equal to

∑
w

∑
m′∈M ′(F )∩wP (F )w−1\M ′(F )

∫
[U ′]

∑
u′∈U ′(F )∩(m′)−1wP (F )w−1m′\U ′(F )

λ.ϕ(w−1m′u′ux)du

(Change Var) =
∑
w

∑
m′

∫
[U ′]

∑
n′∈U ′(F )∩wP (F )w−1\U ′(F )

λ.ϕ(w−1u′um′x)du
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(Unfold) =
∑
w

∑
m′

∫
U ′(F )∩wP (F )w−1\U ′(A)

λ.ϕ(w−1um′x)du.

The change of variables is (m′, u′) 7→ ((m′)−1u′m′, (m′)−1u′m′).

5.2.2 Constant Terms of Cuspidal Eisenstein Series

Lemma 5.6 ( [GH24], 10.4.1). For w ∈ WM ′ \WG/WM we have that w−1P ′w ∩M

is a standard parabolic of M with Levi w−1M ′w ∩M and unipotent w−1U ′w ∩M .

Lemma 5.7 ( [GH24], 10.4.1).

w−1U ′w ∩ P = (w−1U ′w ∩M)(w−1U ′w ∩ U).

Continuing the computation of the constant term above, we will focus purely on
the inner integral now∫

U ′(F )∩wP (F )w−1\U ′(A)
λ.ϕ(w−1um′x)du

=

∫
w−1U ′(F )w∩P (F )\w−1U ′(A)w

λ.ϕ(uw−1m′x)du

(Lemma 5.7) =
∫
(w−1U ′w∩M)(w−1U ′w∩U)(F )\w−1U ′(A)w

λ.ϕ(uw−1m′x)du.

where the first equality is the change of variables w−1uw 7→ u. Denote A =

(w−1U ′(F )w ∩ U(F )) \ w−1U ′(A)w. Unfolding we get the equality

=

∫
(w−1U ′(A)w∩M(A))\A

∫
w−1U ′(F )w∩M(F )\w−1U ′(A)w∩M(A)

λ.ϕ(u1u2w
−1m′x)du1du2.

Now look at the inner integral here more closely∫
w−1U ′(F )w∩M(F )\w−1U ′(A)w∩M(A)

λ.ϕ(u1u2w
−1m′x)du1du2,

applying Lemma ?? we see that this is a constant term for a parabolic of M , of
the function m 7→ ϕ(mu2w

−1m′x). This was in complete generality. If we now
assume further that the Eisenstein series was induced from a cuspidal automorphic
representation, then m 7→ ϕ(mk) is a cusp form and therefore this last integral will
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vanish whenever w−1U ′w∩M 6= {1}, because in that case the inner integral doesn’t
exist (its over a point).

5.2.3 Constant Term Of Eisenstein Series for Conjugate Levis

If we now assume that M ′ = wMw−1 for w ∈ W and recall the definition of our
intertwining operator from section 4.1 we can use the following

Lemma 5.8 ( [MW95] II.1.7 (6)).

U ′(k) ∩ wP (k)w−1 = U ′(k) ∩ wU(k)w−1,

to see that

EP ′(ϕ, λ, x) =
∑
w

∑
m′

∫
U ′(F )∩wP (F )w−1\U ′(A)

λ.ϕ(w−1um′x)du

=
∑
w

∑
m′

∫
U ′(k)∩wU(k)w−1\U ′(A)

λ.ϕ(w−1um′x)du

=
∑
w

∑
m′

M(w, π)(λ.ϕ)(x).

In particular we can combine the conjugate and cuspidal cases to get a much simpler
expression for some constant terms of some Eisenstein series, we will go through a
detailed example in the final chapter 7.



Chapter 6

Siegel Phi Function

In the last chapter we saw some general computations around constant terms of
automorphic forms. This chapter we continue with more computations, however
we attempt to relate the constant term to the classical setting. This should be
understood as a continuation of the example of modular forms as Archimedean
automorphic forms, as here we investigate the constant term in this setting in order
to gain similar intuition. Specifically we will relate the constant term to the Fourier
series constant term and the Siegel Phi operator.

We thank Chengjing Zhang for showing us this example, and present it here in
detail because we cannot find it in the literature.

6.1 Constant Terms

Let G be a classical group over a number field Q. For an Archimedean automorphic
form f : G(R) → C its constant term along a parabolic of G, P = MN ⊆ G, is
defined to be [GH24, 8.6]

f(x)P =

∫
N(Z)\N(R)

f(xn)dn.

To effectively compute constant terms we will routinely use the following two lem-
mas.

Theorem 6.1. If G is a locally compact Hausdorff group with a left Haar measure
µ and if χ : G → C× is a non-trivial character on G, then∫

G

χ(g) dµ(g) = 0.

39
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Proof. Pick an element h of G such that χ(h) 6= 1. The equation above
then follows from∫

G

χ(g) dµ(g) =

∫
G

χ(hg) dµ(g) =

∫
G

χ(h)χ(g) dµ(g) = χ(h)

∫
G

χ(g) dµ(g).

Integrating trivial characters gives the volume of the measure space which we
typically normalise to be one.

Theorem 6.2 (Unfolding, [Gar18] 5.2, [Fol16] Thm 2.49). Let H ≤ G be a closed
subgroup. If H \ G has a right G invariant measure then the integral is unique up
to scalar, namely for a given Haar measures dh on H and dg on G there is a unique
invariant measure dq on H \G such that for all f ∈ C0

c (G)∫
H\G

∫
H

f(hq)dhdq =

∫
G

f(g)dg.

Note that this quotient may not be a group, because H is not required to be
normal. The use of this lemma is called unfolding the integral.

6.2 Siegel Modular Forms

Following [BVDGHZ08]. Recall the Siegel upper half plane of “genus” g ∈ N is

Hg
..= {τ ∈ Mg×g(C) : τ is symmetric and has positive definite imaginary part}
∼= Sp2g(R)/U(g).

where the isomorphism is as analytic manifolds and

U(g) ..=

{(
A B

−B D

)
∈ Sp2g(R) : AAt +BBt = 1

}
.

For every γ = (A B; C D) ∈ Sp2g(Z) and τ ∈ Hg we have the action

γ.τ = (Aτ +B)(Cτ +D)−1.

We say that a holomorphic function f : Hg → C is a (classical) Siegel modular
form of weight k if

f(γ.τ) = det(Cτ +D)kf(τ),
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with the extra condition that if g = 1 it must be holomorphic at ∞. Because
Sp2 = SL2 this is a strict generalisation of an (elliptic) modular form.

The space of Siegel modular forms of weight k and genus g is denoted Mk(Sp2g(Z)).
There is a useful operator know as the Siegel Phi Operator which allows one to
lift known modular forms from lower genus to higher genus [BVDGHZ08, 5]

Mk(Sp2g(Z))
Φ−→ Mk(Sp2(g−1)(Z)),

defined by the limit for τ ∈ Hg−1

Φ(f)(τ) ..= lim
t→∞

f

(
τ

it

)
.

In this context a cusp form is defined to be a Siegel modular form in the kernel of
the Siegel Φ operator and so it is natural to wonder if there is a constant term that
is being taken here.

6.2.1 Automorphising

Just as in the case of modular forms, given a Siegel modular form f ∈ Mk(Sp2g(Z))
we can associate an automorphic form

f̃ : Sp2g(R) → C,

(
a b

c d

)
7→ det(ci+ d)−kf

(
(ai+ b)(ci+ d)−1

)
,

where a, b, c, d are g× g matrices such that
(
a b
c d

)
∈ Sp2g(R). Fix the Borel of upper

triangular matrices. Now for 1 ≤ r ≤ g−1 an integer we have the standard maximal
parabolic of Sp2g, Pr = MrNr such that

Mr
∼= GLr × Sp2(g−r) .

Theorem 6.3 (Zhang). If f is a classical Siegel modular form of weight k and
degree g, then

f̃Pr(uγ) = detuk · (Φrf)∼(γ), (6.2.1)

for every element γ of Sp2(g−r)(R) and every element u of GLr(R).
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In particular

f̃Pg−1


a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

 = (Φf)∼

(
a b

c d

)
.

This shows that perhaps the correct generalisation of the Siegel Phi function is
just the constant term that we all know and love. We could also attempt to expand
this to Siegel modular forms that are vector valued or not of full level.

The only other work on generalising the Siegel Φ operator that we could find
appears in [Gre92]. Grenier formulates the Φ operator in the language of symmetric
spaces [Ter16, Ch. 2] and then shows that the analogous definition in the case of
“automorphic forms” in the sense of the symmetric space Pn/GLn(Z) of symmetric
positive definite real matrices [Ter16, 1.5.1] behaves in the same way. Namely [Gre92,
Thm. 2] shows that it sends an automorphic form for GLn(Z) to an automorphic
form for GLn−1(Z). The point is that the Φ operator can be defined in the generality
of symmetric spaces and Grenier shows that at least in one other case it still preserves
the relevant notion of automorphic form. This suggests two things that would be
interesting to investigate; using the classification of symmetric spaces is it possible to
give a uniform definition of the Φ operator following Grenier and does this definition
agree with the constant term in the way that the Siegel Φ operator does. With my
limited knowledge of symmetric spaces this seems to be very tractable.

6.2.2 Modular Form Case

The base case is very instructive, it deals with modular forms. So consider f a
(elliptic) modular form of full level and weight k, which has a Fourier expansion
given by

f(z) =
∑
n≥0

ane
2πinz.

In section 2.3 we verified that

f̃

(
a b

c d

)
= (ci+ d)−kf

(ai+ b

ci+ d

)
,



6.2. SIEGEL MODULAR FORMS 43

is an automorphic form on Sp2. The only non-trivial parabolic P is the one of upper
triangular matrices, with Levi and unipotant given respectively

M =

(
m 0

0 m−1

)
∼= GL1, N =

(
1 b

0 1

)
∼= Ga,

along which we can now compute the constant term

f̃P (m) =

∫
N(Z)\N(R)

f̃(mb)db

=

∫
Z\R

f̃

(
m mb

0 m−1

)
db

=

∫
Z\R

mkf(m2i+m2b)db

= mka0.

We have chosen normalisation to remove the usual factor of 1/2π in the constant
term of the Fourier series. Moreover we see that

Φ(f) = lim
t→∞

f(it) = lim
t→∞

∑
n≥0

ane
−2πnt = a0.

6.2.3 Simplifying the Constant Term

As we saw in section 1.2.1 for 1 ≤ r ≤ g−1 an integer we have the standard maximal
parabolic of Sp2g, Pr = MrNr such that

Mr
∼= GLr × Sp2(g−r),

which can be given the explicit matrix representations

m(γ,A) ..=


A

a b

(At)−1

c d

 , A ∈ GLr(F ), γ =

(
a b

c d

)
∈ Sp2(g−r)(F ),
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and unipotent

n(s;h, k) ..=


1 0 0 h

−kt 1 ht s+ htk

0 0 1 k

0 0 0 1

 , h, k ∈ Mat(g−r)×r(R), s ∈ Symr(R).

We have the following short exact sequence

1 → Symr(R) → Nr(R) → Mat(g−r)×r(R)×Mat(g−r)×r(R) → 1.

which we will use to unfold our integral below, for compactness we define Hr
..=

Mat(g−r)×r. We will now denote [G] ..= G(Z)\G(R) and compute the constant
term

f̃Pr

(
m(γ,A)

)
=

∫
[Nr]

f̃
(
nm(γ,A)

)
dn

=

∫
[Hr×Hr]

∫
[Symg−r]

f̃
(
n(s;h, k)m(γ,A)

)
ds d(h, k)

=

∫
[Hr]

∫
[Hr]

∫
[Symg−r]

f̃
(
n(s;h, k)m(γ,A)

)
ds dh dk.

Now we focus on simplifying the integrand. We want an explicit form of the
matrix so we can relate it back to the value of the un-lifted Siegel modular form
f ; simply multiply the matrices gives, where (all rings are commutative) A−t ..=

(At)−1

n(s;h, k)m(γ,A) =


a 0 b hA−t

−kta+ htc A −ktb+ htd sA−t + htkA−t

c 0 d kA−t

0 0 0 A−t

 .

because a, b, c, d ∈ Mat(g−r)×(g−r), A ∈ Matr×r we see that the g × g blocks that we
now need to take the determinant of are the 4× 4 corners of this picture, hence the
matrices below should all be in Hg ⊆ Matg×g.

f̃(n(s;h, k)m(γ,A))
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= det

((
c 0

0 0

)
i+

(
d kA−t

0 A−t

))−k

×

f

(( a 0

−kta+ htc A

)
i+

(
b hA−t

−ktb+ htd sA−t + htkA−t

))((
c 0

0 0

)
i+

(
d kA−t

0 A−t

))−1


= det

((
ic+ d kA−t

0 A−t

))−k

×

f

( ia+ b hA−t

−kt(ia+ b) + ht(d+ ic) iA+ sA−t + htkA−t

)(
ic+ d kA−t

0 A−t

)−1


=

(
det(ic+ d)

det(A)

)−k

×

f

((
ia+ b hA−t

−kt(ia+ b) + ht(d+ ic) iA+ sA−t + htkA−t

)(
(ci+ d)−1 −(ci+ d)−1k

0 At

))

=

(
det(A)

det(ic+ d)

)k

f

(
τ −τk + h

−ktτ + ht ktτk + AAti+ s

)
, τ ..= (ai+ b)(ci+ d)−1.

So we have shown that

f̃Pr

(
m(γ,A)

)
=

∫
[Hr]

∫
[Hr]

∫
[Symg−r]

(
det(A)

det(ic+ d)

)k

f

(
τ −τk + h

−ktτ + ht ktτk + AAti+ s

)
ds dh dk

=

(
det(A)

det(ic+ d)

)k ∫
[Hr]

∫
[Hr]

∫
[Symg−r]

f

(
τ −τk + h

−ktτ + ht ktτk + AAti+ s

)
ds dh dk.

Again lets focus on this integrand

f

(
τ −τk + h

−ktτ + ht ktτk + AAti+ s

)
,

and compute its Fourier expansion, see [BVDGHZ08, 3.4]. Recall that a symmetric
matrix n ∈ GLg(Q) is called half integral if 2n is integral with even diagonal entries,
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then a Siegel modular form has a Fourier expansion of the form

f(z) =
∑

n half integral

a(n)e2πiTr(nz).

First the space of half integral g × g matrices, HIg, decomposes as a direct sum via
the (additive) group isomorphism

HIg−r ⊕ 1
2
Matr×(g−r)(Z)⊕ HIr → HIg, (n,m, l) 7→

(
n m

mt l

)
,

thus unfolding the (discrete) integral we get

f

(
τ −τk + h

−ktτ + ht ktτk + AAti+ s

)
=

∑
n∈HIg−r

∑
m∈ 1

2
Matr×(g−r)(Z)

∑
l∈HIr

a

(
n m

mt l

)

exp

(
2πiTr

(
n m

mt l

)(
τ −τk + h

−ktτ + ht ktτk + AAti+ s

))
.

Because all the block sizes are compatible we can “block multiply” the inner matrices
and because we are taking the trace we can forget about off diagonal entries(

n m

mt l

)(
τ −τk + h

−ktτ + ht ktτk + AAti+ s

)

=

(
nτ +m(−ktτ + ht) ∗

∗ mt(−τk + h) + l(ktτk + AAti+ s)

)
.

Putting this into our Fourier expansion

f

(
τ −τk + h

−ktτ + ht ktτk + AAti+ s

)

=
∑
n

∑
m

∑
l

a

(
n m

mt l

)
exp

(
2πi
(

Tr(nτ) + Tr(m(−ktτ + ht)) + Tr(mt(−τk + h))

+Tr(l(ktτk + AAti+ s))
))

.
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If we denote Tl
..= Tr(l(ktτk + AAti+ s)),

Tm,h
..= Tr(mht +mth), Tm,k

..= Tr(−mktτ −mtτk),

and Tm
..= Tm,h + Tm,k then we can substitute this back into our constant term

f̃Pr

(
m(γ,A)

)
=

(
det(A)

det(ic+ d)

)k ∫
[Hr]

∫
[Hr]

∫
[Symg−r]

∑
n

∑
m

∑
l

a

(
n m

mt l

)
exp (2πi(Tr(nτ) + Tm + Tl)) ds dh dk

=

(
det(A)

det(ic+ d)

)k∑
n

∑
m

∑
l

a

(
n m

mt l

)
e2πiTr(nτ)

∫
[Hr]

∫
[Hr]

∫
[Symg−r]

e2πi(Tm+Tl) ds dh dk

=

(
det(A)

det(ic+ d)

)k∑
n

∑
m

∑
l

a

(
n m

mt l

)
e2πiTr(nτ)

∫
[Hr]

e2πiTm,k

∫
[Hr]

e2πiTm,h

∫
[Symg−r]

e2πiTl ds dh dk.

Remark 6.4. We have a priori uniform convergence on compact subsets of these
integrals, however we leave it for future work to check the details of interchanging
these sums and integrals.

Now we use lemma 6.1 and the fact that s 7→ e2πiTl is a non-trivial unitary
character of Symg−r whenever l 6= 0 to get that

∫
[Symg−r]

e2πiTl ds =

1, l = 0

0, l 6= 0
.

We repeat this trick with the second integral, which enforces that m = 0 and end
up with

f̃Pr

(
m(γ,A)

)
=

(
det(A)

det(ic+ d)

)k ∑
n∈HIg−r

a

(
n 0

0 0

)
e2πiTr(nτ),

but by [BVDGHZ08, 3.5] we know that the Fourier expansion of the Siegel Phi
operator is

(Φrf)(τ) =
∑

n∈HIg−r

a

(
n 0

0 0

)
e2πiTr(nτ).
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Hence

f̃Pr

(
m(γ,A)

)
=

(
det(A)

det(ic+ d)

)k

Φr(f)(τ)

= det(A)k(Φr(f))∼(γ),

which concludes the proof. �



Chapter 7

Poles of Residual Eisenstein Series

Our goal here is to exposit and survey the work in papers such as [Bre09] [JLZ13].
The idea is to locate the poles and zeroes of certain Eisenstein series.

[Bre09] gave an analysis of the residual poles of Eisenstein series attached to
Sp2n, there were some minor errors that were corrected in [JLZ13] where they give
essentially the same proof; theirs however works for the other classical groups. To
show the pattern we will focus on the case of Sp2n, as a group defined over F a
number field. Theirs is a proof by induction and we will try to give the details of
the base case.

7.1 Residual Eisenstein Series

So for the rest of the chapter we will fix an n ∈ N, Gn = Sp2n and the Borel of
upper triangular matrices in Sp2n, then we look at partitions of n = r +m, where
1 ≤ r,m ≤ n and r,m ∈ Z. Then as we saw in section 1.2.1 there corresponds a
maximal standard (proper) parabolic of Sp2n, which we denote Pr = MrUr, such
that the Levi component is

GLr × Sp2m .

As we saw in section 4.2 the space of characters XSp2n
Mr

is one dimensional by the max-
imality of Pr. We fix a τ , an irreducible unitary cuspidal automorphic representation
of GLr. Now we take an irreducible generic cuspidal automorphic representation
σ of Sp2m, then the tensor product τ ⊗ σ gives a representation of GLr × Sp2m

and hence of the Levi Mr. We now consider the Eisenstein series attached to this
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representation, namely if

ϕ ∈ A(Ur(A)Mr(F ) \ Sp2n(A))τ⊗σ,

then we have the Eisenstein series

E(ϕ, s)(g) =
∑

γ∈Pr(F )\Sp2n(F )

s.ϕ(γg),

for g ∈ Sp2n(F ) \ Sp2n(A). This is the base case of the setup in [JLZ13].

Remark 7.1. We will not define the condition of being generic. It is not relevant
to the computation that we do of the constant terms. In this context it can be
interpreted as saying that the L-functions are well defined and have the required
properties.

7.2 The Constant Term

So far we only know how to do one thing with such Eisenstein series and that is
compute their constant term. We will compute the constant term along the maximal
parabolic Pr = MrUr because by [MW95, II.1.7 (ii)] the others are zero.

By our earlier calculations in section 5.2, the fact that the tensor of cuspidal
representations is cuspidal (elementary) and [JLZ13] we know that

E(ϕ, s)Pr =
∑
w

∑
m′

∫
Ur(F )∩wPr(F )w−1\Ur(A)

λ.ϕ(w−1um′x)du.

By [JLZ13] the inner integral vanishes for all w 6= id, ω where ω ∈ WSp2n , this
element is computed explicitly in [GRS11] however it is not needed here. Hence the
first sum becomes over two elements and we have

E(ϕ, s)Pr = E(ϕ, s)Pr,id + E(ϕ, s)Pr,ω,

where

E(ϕ, s)Pr,w(x) =
∑

m′∈Mr(F )∩wPr(F )w−1\Mr(F )

∫
Ur(F )∩wPr(F )w−1\Ur(A)

s.ϕ(w−1um′x)du.

First the identity term simplifies
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E(ϕ, s)Pr,id(x) =
∑

m′∈Mr(F )∩Pr(F )\Mr(F )

∫
Ur(F )∩P (F )\Ur(A)

s.ϕ(um′x)du

=
∑

m′∈Mr(F )\Mr(F )

∫
Ur(F )\Ur(A)

s.ϕ(um′x)du

=

∫
Ur(F )\Ur(A)

s.ϕ(ux)du

= s.ϕ(x)Pr .

Considering now the ω term

E(ϕ, s)Pr,ω(x) =
∑

m′∈Mr(F )∩ωPr(F )ω−1\Mr(F )

∫
Ur(F )∩ωPr(F )ω−1\Ur(A)

s.ϕ(ω−1um′x)du.

By [JLZ13, 2C] Mr(F )∩ ωPr(F )ω−1 \Mr(F ) is isomorphic to P0 \ Sp2(n−a), but
P0 has Levi M0 = Sp2(n−a) by definition and hence is itself Sp2(n−a). Thus the sum
is over Sp2(n−a)(F ) \ Sp2(n−a)(F ) and hence is over a point. Therefore we get by
definition of the intertwining operator

E(ϕ, s)Pr,ω(x) =

∫
Ur(F )∩ωPr(F )ω−1\Ur(A)

ϕ(ω−1ux)du = M(ω, s)(ϕ)(x),

because we took the constant term along the same parabolic as the definition of the
Eisenstein series we know that the Levis are (the same) conjugate. Thus we have
shown that

E(ϕ, s)Pr = s.ϕPr +M(ω, s)(ϕ).

Because ϕ is an automorphic form it has no poles and so we have shown the
following:

Lemma 7.2 (Base case of [JLZ13], 2.1). The poles of E(ϕ, s) are exactly the poles
of E(ϕ, s)Pa which are exactly the poles of M(ω, s).

7.3 Analysing the Intertwining Operator

It is at this point that our understanding becomes quite superficial. We can only
quote the recent results, as they are completely out of the scope of this thesis. We
have summarised what we know in this direction in Appendix A
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First in [CKPS, 11.1] it is shown that

M(w, s) = r(w, s)N(w, s),

where N(w, s) is an intertwining operator that is holomorphic and non-zero for
Re(s) ≥ 0 and r(w, s) is a ratio of L-functions.

Remark 7.3. It is not shown in complete generality but only for intertwining oper-
ators associated to tensor products

π ⊗ π′,

where π is an irreducible admissible unitary generic representation of GLn(A) and
π′ is a generic cuspidal automorphic representation of Sp2m(A). This is the case
that we are in however so it can be applied.

In the case we are considering the normalising factor r is given by the equation
[JLZ13, 4A]

r(w, s) =
L(s, τ × σ)L(2s, τ,∧2)

L(s+ 1, τ × σ)L(2s+ 1, τ,∧2)
,

where ∧2 denotes the exterior second power of the standard representation of GLr(C).
Thus

Lemma 7.4. The Eisenstein series above has pole at s for Re(s) ≥ 0 if and only if
r(w, s) has a pole at s.

The final step is then to use the known properties of L-functions to conclude
when our r-factor will have poles and of what order those poles will be. [JLZ13] tells
us that L(s, τ × σ) and L(s, τ,∧2) are both holomorphic except for possible simple
poles at s = 0, 1 and non-zero for Re(s) ≥ 1.

The denominator is holomorphic and non-zero for Re(s) > 0. The numerator is
holomorphic except possible poles at s = 1 or s = 1/2.

Moreover we know that these poles will occur only when they occur in the
respective L-functions. If s = 0 then the simple poles on the numerator cancel
with those on the denominator. This is summarised in the following:

Theorem 7.5 ( [JLZ13], 4.1). Let τ be an irreducible unitary cuspidal automorphic
representation of GLr. Let σ be an irreducible generic cuspidal automorphic repre-
sentation of Sp2m. The Eisenstein series E(ϕ, s) is holomorphic for all s ∈ C with
Re(s) ≥ 0 except at s = 1

2
and s = 1 where it has possible simple poles. Moreover
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• It has a simple pole at s = 1
2

if and only if L(s, τ,∧2) has a pole at s = 1 and
L(1

2
, τ × σ) 6= 0

• It has a simple pole at s = 1 if and only if L(s, τ) has a pole at s = 1.



Appendix A

L-Functions

The theory of L-functions is not yet systematic; Langlands has provided a conjec-
tural framework, however it is still under construction. In the mean time there are
two major “paradigms” for constructing and proving theorems about L-functions,
those are the Langlands-Shahidi type constructions and the Rankin-Selberg type
constructions. General surveys can be found in [BC79, Part 2.III.2] [Sha10] [Cogd]
[BCDS+04, 9, 10, 11] [Art].

The Rankin-Selberg type functions are surveyed in [Bum11]. The GLn×GLm

case is dealt with in [Cogb]. For Rankin-Selberg L-functions of form Sp2n×GLm

the theory (for generic cuspidal representations) is worked out in [GRS98].
The Langlands-Shahidi paradigm is explained in [Sha90,Sha10].
We have by [Cogd] some properties uniquely determining L-functions for tem-

pered representations. By [Sha11] all generic representations are tempered so we
can apply the theory of Rankin-Selberg and Ginzburg-Ralis to explicitly construct
global L-functions and prove theorems about them. In particular their analytic
properties are well understood in these cases from [Grb11,Coga]. Note that [Grb11]
is conditional on the unfinished work of Arthur [Art13].

A.1 The Langlands Framework

We follow closely Borels exposition in [BC79, Part 2. III. 2. ] and [Sha10]. Given a
reductive LAG G defined over C there is an associated root datum as in (X,Φ, X̂, Φ̂),
where for any choice of maximal torus we have X = Hom(T,Gm), X̂ = Hom(Gm, T ),
and Φ, Φ̂ are the roots and coroots of G with respect to T [Spr98, 7.4.3]. Then each
reductive LAG G over a number field F has the root datum that is associated to

54
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the base change of G to C, (X,Φ, X̂, Φ̂). By the existence theorem [Spr98, 10] to
the dual root datum (X̂, Φ̂, X,Φ) there is a LAG defined over C that corresponds,
we call this the dual group of G and we denote it Ĝ. It is possible through the use
of the root datum to specify a “cannonical” action of Gal(F̄ /F ) on Ĝ as in loc. cit.
The Langlands dual group is then the dual group semi-direct producted with the
Gal(k̄/k) via this action, which we omit

LG ..= ĜoGal(k̄/k).

Example A.1 (Classical Groups, [BCDS+04], 11.1). We have the following table

G Ĝ
GLn GLn

SO2n+1 Sp2n

SO2n SO2n

Sp2n SO2n+1

If ν is a non-archimedean place of F, then Oν is a local ring and we denote
qν the cardinality of the residue field i.e. if pν is the unique maximal ideal of
Oν then qν ..= [Oν : pν ]. Using the Satake isomorphism, to each unramified
representation of G(Fν) we can associate a conjugacy class of LG, via some map call
it c, and hence there is a way to apply a complex representation r : LG → GLn(C) to
unramified representations of G(Fν), details in [Sha10, 2]. Given such an unramified
representation of G(Fν), call it πν , the local automorphic L-function is then

Lν(s, πν , r) ..=
1

det
(
I − r(c(πν))q−s

ν

) , s ∈ C.

In the global case we consider an irreducible automorphic representation π = ⊗νπν

of G(A), and a finite set of places of F , call it S, such that S contains all infinite
places and for all ν /∈ S πν is unramified. Recall that we denoted the Langlands dual
of G defined over F by LG. We denote the Langlands dual of G defined over Fν for
ν /∈ S by LGFν . If r is a finite dimensional complex representation of LG then the
embedding of Galois groups Gal(F̄ν/Fν) ↪→ Gal(F̄ /F ) induces a map LGFν →L G

along which we can pull r back, giving a representation rν of LGFν . Then the partial
global L-functions are defined to be

LS(s, π, r) ..=
∏
ν /∈S

L(s, πν , rν), s ∈ C.



56 APPENDIX A. L-FUNCTIONS

Example A.2 (Standard Representations / Classical Groups). In the case of clas-
sical groups it is common to see L-functions with only two entries e.g. if ρ is a
representation of G = Sp 2n then you may see L(s, ρ). The reason is that there is a
standard representation of the dual groups of classical groups. Namely the standard
representation of a matrix group inside GLn is the one that sends g 7→ g. It is this
representation that is to be taken for the dual group in this setting.

Example A.3 (Rankin-Selberg, [Cogb], 1.2, [AG91], Ch. 2 Example. 2). Let ν be a
finite place of Q and π, π′ be two unramified generic representations of GLn(Qν) and
GLm(Qν) respectively. Let Bn be the standard Borel of upper triangular matricies
in GLn. Such representations have been classified in terms of characters of Q×

ν , in
particular for π there are µ1, ..., µn unramified characters such that

π ∼= Ind
GLn(Qν)
B(Qν)

(
µ1 ⊗ · · · ⊗ µn

)
.

If we fix a uniformizer $ of Qν then we have the so called “Satake parameters”
µi($) which determines π uniquely. Of course the same is true for π′, with say
characters µ′

1, ..., µ
′
m. We then define

L(s, π × π′) ..=
∏
i,j

1

1− µi($)µ′
j($)q−s

.

Consider the group G = GLn×GLm which has dual GLn(C) × GLm(C), then
there is a cannonical representation

⊗ : GLn(C)×GLm(C) → GLnm(C).

Then
L(s, π ⊗ π′,⊗) = L(s, π × π̃′),

where the tilde denotes the contragradient.
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